

®

Oracle Database 11g
New Features

Robert G. Freeman

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071496610

Copyright © 2008 by The McGraw-Hill Companies, Inc. (Publisher). All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the
publisher.

0-07-159578-3

The material in this eBook also appears in the print version of this title: 0-07-149661-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in
corporate training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-
hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and
to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work
is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK
VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall
be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under
no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential
or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or
cause arises in contract, tort or otherwise.

DOI: 10.1036/0071496610

http://dx.doi.org/10.1036/0071496610

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0071496610

This book is dedicated to my wife and companion Lisa, who is always there
for me, patient with me, and loves me in spite of my many faults. This book
is dedicated to my kids, Felicia, Sarah, Jacob, Jared, and Elizabeth, who are

the light of my life even if they don’t know this all the time.

About the Author
Robert G. Freeman is a principal DBA and Team Manager at the Church of
Jesus Christ of Latter-day Saints. He has been working with Oracle now for
almost two decades and is the author of over a dozen different works on
Oracle. He resides in Salt Lake City, Utah, with his lovely wife Lisa, three
of his five kids, two grumpy cats, two airplanes, and a dog that whines all
the time.

About the Contributor
Arup Nanda has been an Oracle DBA for more than 12 years working on
all challenges an Oracle DBA can possibly face—from modeling to
performance tuning to disaster recovery and even people problems. He is
a frequent speaker at many Oracle-related conferences and has coauthored
four books and numerous articles including the Oracle Database 10g and
11g New Features series on Oracle Technology Network. In 2003, Oracle
Magazine chose him as DBA of the Year. He lives in Connecticut with his
wife Anindita and son Anish.

About the Technical Editor
Peter Sharman has 18 years of IT experience designing, implementing, and
managing the performance of Oracle solutions. As a solo consultant and
team leader, Pete has provided administrative and technical leadership to
leading Internet-based businesses, as well as several Fortune 100 and
Fortune 500 companies. He has also completed world-class benchmarks
and implementation reviews of the Oracle RDBMS, and performed high-
impact performance tuning. A proven technical leader, Pete has acquired
expert-level skills in Real Application Clusters (RAC) database design,
administration, backup and recovery, operations planning and management,
performance management, system management, and security and
management of complex data centers. Pete has also presented at numerous
conferences around the world, and written a book on Oracle architecture
and administration. Pete has passed all the Oracle DBA Certifications, as
well as being a qualified Oracle9i/10g Certified Master.

Currently, Pete is part of the RAC Quality Assurance group in Server
Technologies Development at Oracle, testing the quality of all parts of the
Oracle code base when run in a RAC environment.

Contents

FOREWORD . xiii
ACKNOWLEDGMENTS . xv
INTRODUCTION . xvii

 1 Oracle Database 11g Getting Started . 1
Installing Oracle Database 11g . 2
The Database Configuration Assistant . 4
Upgrading to Oracle Database 11g . 4

Saving Time When Upgrading . 5
Supported Upgrade Paths . 8
Supported Upgrade Methods . 9
Upgrade with DBUA . 9
Manual Upgrades . 17
Using Export/Import for Upgrades and Rollback 23
Upgrade Using Data Copying . 25

Oracle Parameter Changes . 25
New Parameters . 25
Deprecated Parameters . 27
Obsolete Parameters . 28
Undo_Management Parameter Madness . 28

Oracle Dictionary View Changes . 28
End of Line . 29

 2 Oracle Database New Management Features . 31
ASM-Related Changes and New Features . 32

New ASM-Related Documentation . 33
ASM Disk Group Attributes . 33
ASM Fast Disk Resync . 34
ASM Compatibility Settings . 35
ASM Preferred Mirror Read . 36
ASM Rolling Upgrades . 37

v

For more information about this title, click here

http://dx.doi.org/10.1036/0071496610

vi Oracle Database 11g New Features

ASM Support for Variable Allocation Unit Sizes 38
New SYSASM Role . 38
New asmcmd Commands . 40

Automatic Memory Management . 42
Overview of Automatic Memory Management 42
New Memory Advisor Functionality and Views 45
How Is Oracle Managing My Memory? . 46
Automatic Memory Management and OEM 47
Converting to Automatic Memory Management 48

ADDM New Features . 48
ADDM New Views . 48
ADDM Now RAC-Aware . 49
Managing ADDM Through DBMS_ADDM . 50
Finding Classifications . 52
Directives . 53

AWR New Features . 55
Default Retention of AWR Snapshots Changed 55
AWR Baseline New Features . 55
Adaptive Metric Thresholds . 59

Scheduler AutoTask Automated Maintenance Tasks 60
AutoTask Architecture . 60
AutoTask Dictionary Views . 61
Managing AutoTask Tasks via OEM . 64
Managing AutoTask Tasks Manually . 65
AutoTask Maintenance Windows . 67

Parameter File Management Changes and New Features 69
Read/Write Error Handling of SPFILES . 69
Easier Conversion to the Use of SPFILES . 69
Users Are Prevented from Setting Invalid Values in SPFILES 70

Resource Manager Changes and New Features . 70
IO Calibration . 70
Default Maintenance Plan . 72
Built-In Resource Plans . 73
Resource Manager Statistics in AWR . 74
Resource Manager Plan Directive New Features 74

Finer-Grained Dependencies . 76
DDL WAIT Option Now Default . 77
New Add Column Functionality . 78
End of Line . 79

 3 Oracle Database New Availability and Recovery Features 81
Fault Diagnosability Infrastructure . 82

The Automatic Diagnostic Repository (ADR) 82
The Alert Log . 84

Trace, Dump, and Core Files . 85
The Support Workbench . 85

RMAN New Features . 99
Interfile Backup Parallelism . 100
Faster Backup Compression . 102
Active Database Duplication . 102
Improved Handling of Long-Term Backups . 106
Backup Failover for Archived Redo Logs . 107
Archived Redo Log Deletion Policy Enhancements 107
Recovery Catalog Enhancements . 107
Undo Backup Optimization . 109
Block Media Recovery Performance Improved 109
Other RMAN New Features . 109

Oracle Flashback-Related New Features . 110
Oracle Flashback Transaction Backout . 111
Oracle Flashback Data Archives . 114

Oracle Standby Database New Features . 119
Lost-Write Detection . 119
Compression of Archived Redo Logs . 120
Real-Time Query Capabilities from a Physical Standby Database . . . 120
Snapshot Databases . 120

Oracle Data Pump New Features . 121
Exp Utility Deprecated . 122
Compression of Dump File Sets . 122
Data Pump Encryption Enhancements . 123
Data Pump Data Remapping (Obfuscation) 123
Data Pump Rename Table . 125
Data Pump and Partitioned Tables . 125
Overwrite Dump Files . 125
Data Pump Data_Options Parameter . 125
The Transportable Parameter . 126

End of Line . 126

 4 Oracle Database Advisors . 127
The Data Recovery Advisor . 128

The SQL Repair Advisor . 139
The SQL Access Advisor . 140
The Streams Performance Advisor . 146
Oracle Database 10g Database Advisor Views 147

End of Line . 148

 5 Oracle Database Change Management . 149
Database Replay . 150

Using Oracle Database Replay . 150
Database Replay—Overview . 151

Contents vii

viii Oracle Database 11g New Features

Database Replay Workload Support and Limitations 152
Database Replay—Capture Workload . 153
Database Replay—PreProcess the Captured Workload 165
Database Replay—Replay Workload . 168

The SQL Performance Analyzer . 181
Overview of SQL Performance Analyzer . 181
SQL Performance Analyzer via OEM . 181
SQL Performance Analyzer via PL/SQL . 188

End of Line . 194

 6 Oracle Database 11g Security . 195
Auditing . 196
Password-Related Features . 197

Password Settings and the Default Profile . 197
Password Complexity . 198
Password Case Sensitivity . 199
Hacking Prevention with Failed Logon Delays 199
Password Hashing Changes . 201
Default Password Use . 201

Fine-Grained Access Control on Network Services . 202
Create the ACL and Define the Associated Privileges 202
Assign the ACL to Network Hosts . 203
ACL-Related Data Dictionary Views . 204

Tablespace Encryption . 204
Overview of Oracle Tablespace Encryption . 204
Preparing the Database for Tablespace Encryption 205
Creating Encrypted Tablespaces . 207
Encryption and Database Performance . 208

TDE and Log Miner, Logical Standby, and Streams . 209
Oracle SECUREFILE LOBS . 209
End of Line . 210

 7 Oracle Database BI and Data Warehousing New Features 211
Partitioning . 212

Interval Partitioning . 212
Extended Composite Partitioning . 217
Reference Partitioning . 218
System Partitioning . 220
System-Managed Domain Indexes . 221

Virtual Columns . 222
About Virtual Columns . 222
Creating Tables with Virtual Columns . 223
Partitioning Tables with Virtual Columns . 225

Data Pump Single-Partition Imports . 225

Materialized Views and Query Rewrite . 227
Online Redefinition for Tables with Materialized View Logs 227
Query Rewrite During Refresh . 227
Partition Change Tracking Refresh for Union All Mviews 227
New and Enhanced Materialized View Catalog Views 227
Query Rewrite Enhancements . 229

The Pivot and Unpivot Clauses . 231
The Pivot Clause . 231
The Unpivot Clause . 234

Table Compression . 235
End of Line . 238

 8 Application Development . 239
SQL*Plus . 240

New set Commands . 240
Fast Application Notification Events in an RAC Database 241

Online Application Maintenance and Upgrade . 241
New lock table Parameter . 242
Fewer Exclusive Locks Taken During Online Operations 242
Invisible Indexes . 242

SQL . 244
Read-Only Tables . 244
SQL Query Result Cache . 244
Client Side Result Cache . 249
Regular Expression Enhancements . 249
Named and Mixed Notation from SQL . 250

PL/SQL . 251
Create Triggers as Enabled or Disabled . 251
Create Trigger Follows Clause . 252
Compound Triggers . 253
Inlining . 256
SIMPLE_INTEGER Datatype . 257
PL/SQL Function Result Cache . 258
Dynamic SQL . 259
Dynamic SQL and REF Cursors . 259
PLW 06009 Warning . 260
PL/SQL Sequence Enhancement . 260
PL/SQL Continue Statement . 261

End of Line . 262

 9 Performance Tuning . 263
Enhanced Oracle Process Monitoring . 264
Statistics . 266

Pending and Published Statistics . 266

Contents ix

x Oracle Database 11g New Features

Recovering Previous Statistics . 268
Extended Statistics . 269

PL/SQL Native Compilation . 276
SQL Plan Management . 277

SQL Plan Management Overview . 277
Plan Capture . 278
Use of SQL Plan Baselines . 280
Querying SQL Plan Baselines . 280
Evolving SQL Plan Baselines . 282
Managing SQL Plan Baselines . 283

Automatic SQL Tuning . 286
Overview of Automatic SQL Tuning . 286
Automatic SQL Tuning with OEM . 288
Manage Automatic SQL Tuning Manually . 291

Manual Creation and Use of SQL Tuning Sets . 296
Create the Task . 296
Create the SQL Tuning Set . 296
Load the SQL Tuning Set . 297
Link the SQL Tuning Set and the Task . 298
Set Any Task Parameters . 298
Execute the Task . 298
Review the Results . 299

Intelligent Cursor Sharing (Bind-Aware Peeking) . 300
About Bind-Aware Peeking . 300
Bind-Aware Peeking Views . 301
Starting a System with Bind-Aware Peeking . 301

Temporary Tablespace Features . 302
Temporary Tablespace Shrink . 302
The DBA_TEMP_FREE_SPACE View . 303

Real-Time SQL Monitoring . 303
Real-Time SQL Monitoring Overview . 303
Real-Time SQL Monitoring Views . 303
Real-Time SQL Monitoring Report . 304
Control Real-Time SQL Monitoring . 304

Control the Use of OEM Management Packs . 305
End of Line . 305

 10 Other New Features and Enhancements . 307
Real Application Clusters . 308

OCI Runtime Connection Load Balancing . 308
Using XA Transactions with RAC . 309
RAC Configuration Assistants . 309
Network Configuration Assistant (NetCA) . 310

Database Rolling Upgrade . 310
Parallel Execution Honors Service Placement 311
Direct NFS . 312

XMLDB New Features . 313
Binary XML Storage . 313
Partitioning Support for XMP . 318
XQuery Enhancements . 318
Database Native Web Services . 320
XML DB Repository Enhancements . 321
XML Developers Kit . 322

Java . 322
Oracle JVM-Related Features . 322
Enhancements to Existing Utilities . 325
The ojvmtc Utility . 326
JDBC 4.0 Support . 327
JDK Support in Oracle Database 11g . 328

New Oracle Supplied Packages and Procedures . 328

 A Arup’s Top Ten Features . 331
Arup’s Top Feature # 1: Database Replay . 333
Arup’s Top Feature # 2: SQL Performance Analyzer 334
Arup’s Top Feature # 3: Partitioning . 334
Arup’s Top Feature # 4: Transparent Tablespace Encryption 336
Arup’s Top Feature # 5: Flashback Data Archive . 337
Arup’s Top Feature # 6: SQL Plan Management . 338
Arup’s Top Feature # 7: Private Statistics . 339
Arup’s Top Feature # 8: More Concurrency . 341
Arup’s Top Feature # 9: Result Cache . 342
Arup’s Top Feature # 10: Better-Quality PL/SQL Code 343

 Index . 345

Contents xi

This page intentionally left blank

Foreword

s of the publication of this book, I’ve been working for Oracle
Corporation for a little over 14 years—and in those 14 years, I’ve
seen 14 major releases of the Oracle Database go production—from
version 6 through 7, 8, 8i, 9i and 10g—all the way to the current
release, Oracle Database 11g Release 1.

Every new release brings with it hundreds of new features and changes, and
Oracle Database 11g Release 1 is no exception.

Over time, the question everyone asks is “How do you keep up with all of this
change?” Enter Robert Freeman and Arup Nanda, two very respected names in the
Oracle community. Robert and Arup together continue their long tradition of
educating and participating in the Oracle community with the release of this book
Oracle Database 11g New Features. Both are active users of the Oracle Database
software—engaged in the day-to-day production administration of large Oracle
instances—and therefore write from the standpoint of someone who uses the
software every day. It is this perspective, from the viewpoint of production DBAs,
that makes this book both unique and useful.

This book introduces and provides examples of using many of the new 11g
features and functions—educating the reader as to the overall intent and purpose of
the functionality as well as demonstrating how it is implemented and how to use it.

Robert and Arup cover everything from new database management features to
availability and recovery (the authors are well known in the Oracle universe for
their solid knowledge of backup and recovery).

Oracle Database 11g Release 1 will forever change the way Database
Administrators will approach upgrades and changes—with the introduction of Real
Application Testing and the Database Replay feature. The authors dedicated an
entire chapter of the book to this database option—a section I truly appreciate,
given that real-world testing is the only way to introduce change in a production
system. The authors give you the information you need to get started with this
feature and understand what it does and does not do.

A

xiii

xiv Oracle Database 11g New Features

The chapter on performance tuning and large databases will be one many people will
skip right to and start with. Over time, Oracle has added many features to the database to
facilitate performance tuning as well as features to make things “go faster.” The authors
cover the most relevant new additions in Oracle Database 11g Release 1 including the
new partitioning features and SQL plan management.

All in all, this book will make understanding what Oracle Database 11g Release 1
means to you. Filled with explanations written for DBAs and developers by a pair of
DBAs/developers, this book will be a virtual roadmap to understanding this new release.

Enjoy.

—Tom Kyte, Oracle Corporation

Acknowledgments

ight off the bat I should say that I don’t like to name names. When
you do that, inevitably people get forgotten, and feelings get hurt,
so only a few names will be mentioned directly here.

The creation of any book takes the work of so many people. First
and foremost, thanks to my wife and companion Lisa who puts up

with me spending my time writing (at least that’s what I’m calling it). Thanks to my
kids, who constantly come into my office to remind me that I’m a father, not just a
writer.

Thanks to my dad, who gave me my drive to succeed and never quit.
Thanks to all my co-workers and friends at the Church of Jesus-Christ of Latter-

day Saints where I work. They are too numerous to mention here, but they are a
great bunch of folks to work with.

An acknowledgement to all those whom I have worked with in the past is most
in order. I dare not print a list of all those people for fear of leaving someone out. To
all of you I owe more thanks than I can say. Thanks to previous employers who
gave me wonderful opportunities.

Super-duper thanks to Tom Kyte for writing an incredible introduction. Thanks,
Tom!!

Thanks to Arup Nanda for his great “Arup Says” contributions. Arup really adds
so much value to this book and it is a much better work with his additions.

Thanks to Pete Sharman, my long-time friend and the technical editor of this
book. He did a great job, and was brutally honest when something wasn’t up to
snuff.

A special thanks to Chapter 10 contributors Dan Norris and Kyle Brokaw.
Without their assistance this book would not have been as complete. They each
did an awesome job, and I appreciate their contributions.

R

xvxv

xvi Oracle Database 11g New Features

Thanks to all the folks at Oracle who helped with this book as it was being written.
Thanks to the beta staff and the metalink support staff and development for all the
assistance I received from you!

Thanks to my friends, including those in and out of the Oracle community. One in
particular was going through some rough times during the writing of this book. Divorce is
an ugly business and I wish I could have been more help for you, my friend. I hope 2008
is a better year.

Last but not least, thanks to all the folks at Oracle Press who have made this book
better than it would have otherwise been. Lisa McClain is tops. She’s been there for the
last several of my books and always keeps me in line. Vasundhara Sawhney was a great
help getting this thing put together and Mandy Canales kept me on schedule, making sure
this book got out on time. Thanks to everyone else at Oracle Press for the hard work and
dedication!

Introduction

racle Database 11g is the newest release of Oracle’s flagship
database product. It contains a number of new innovations, which
we cover in the pages of this book. This is my third Oracle “New
Features” book for Oracle Press, and I’ve actually been writing them
since Oracle 8.0 was released. For each book, it’s been an

incredible experience to go through the product, find the new features, and learn
how to use them.

It can be difficult to write books about new features. First, you don’t start out
running the production product. You write using a beta copy of the software, and just
hope that the final release does not change too much. Also, the marketing reality is
that publishers want to get books out to market. So there is always this battle
between quality and delivery. In fact, the folks at Oracle Press/McGraw Hill are
terrific about this, and understand the battle. In this book we have cut no corners.
We wrote initially on the beta, and after the production code came out we went
over the chapters with the production code looking for any changes.

The first new features book I wrote (in fact, my first book) was for upgrading
from Oracle 7.3 to Oracle 8. This first book was written with the upgrade exam in
mind. The book was written after Oracle 8 was released, so I had documentation at
hand. The first book written from beta code was Oracle9i New Features. The 9i Beta
was difficult. The documentation was not complete, and it was difficult to discover
any information on the new feature sets that were being released. Oracle Database
10g was easier. The beta was a much easier process and documentation was more
plentiful.

The Oracle Database 11g beta has been quite good in many respects. The
documentation and ancillary information on what was in the Oracle Database 11g
beta, and what was to come, was much more complete. As a result of this more
mature beta, I think this book is so far the best of all the new features books that I’ve
written. We started writing this book in early 2007, starting with the beta Oracle

O

xvii

xviii Oracle Database 11g New Features

product, and then went over it chapter by chapter with the production product to make
sure it was as accurate as it could be.

If you have read my new features books before, you will notice a bit of a difference in
this volume. We have given OEM quite a bit more coverage this time. I can honestly say
that I no longer hate OEM (which was not the case prior to, say, Oracle Database 10g).
You will find much more coverage of OEM functionality. However, fear not; I’ve also
tried to cover command-line methods as well, and in the few cases where it had to boil
down to command-line or OEM coverage, I went with command line.

This is a book principally for the early adopter of Oracle Database 11g. It was written
long before the Oracle certification exams were released, thus it is not a guide for those
exams. Still, this book covers a great deal of the functionality that will no doubt be
covered in the forthcoming certification process, so I suspect that it will help in one’s
attempt to pass the certification tests.

This book represents many hours of work on the part of numerous people. We all hope
you enjoy this book and that it helps you in your efforts to master Oracle Database 11g.

CHAPTER
1

Oracle Database 11g
Getting Started

1

2 Oracle Database 11g New Features

nce again we set out on the adventure of discovery. As I did in my
previous titles Oracle9i New Features and Oracle Database 10g New
Features, I will introduce you to the wealth of new functionality of
Oracle Database 11g! Joining us on this journey is none other than
Arup Nanda. You probably know Arup for his Oracle Database 10g

New Feature series that he wrote for Oracle Technology Network (OTN); it was very
popular (and he’s doing the same for Oracle Database 11g, a great companion web
site to this book!). Arup will provide commentary thoughout this work, giving you
his take and insights on specific features. Also, at the end of the book in the Appendix
you will find Arup’s top ten new features list.

This chapter is the place to begin, as we will discuss a number of “preflight”
topics such as:

 Installing Oracle Database 11 ■ g

Upgrading your database to Oracle Database 11 ■ g

New parameters in Oracle Database 11 ■ g

Changes to parameters in Oracle Database 11 ■ g

As always, this book is designed for early adopters, and for those who want to
get a heads-up on what is available in Oracle Database 11g. Oracle Database 11g is
a huge new release of the Oracle RDBMS product, and as such it has hundreds of
new features, some obscure and perhaps even forgettable and some very important.
In this volume I’ve done my best to give you concise information, including
examples, on what I felt were the most important of the new features.

NOTE
In this volume we are highlighting the changes to the
Enterprise Edition of Oracle, so if you are running
Oracle Standard Edition you might find that some of
these features do not work.

Installing Oracle Database 11g
The Oracle Database 11g installer and the install process are not much different
than that of Oracle Database 10g. The base install still comes on one CD, and a
companion CD is available for ancillary products. There are a few changes to what
is found on these install CDs, including:

O

Chapter 1: Oracle Database 11g Getting Started 3

 ■ Oracle Application Express (APEX) is no longer installed on the companion
CD. Instead it is installed when you install the base Oracle Database 11g
product.

The Data Warehouse Builder is installed when you install the base Oracle ■
Database 11g product.

All Enterprise edition installs will include Oracle Data Mining unless it is ■
deselected.

One somewhat important change in the Oracle Database 11g install process is
that it keys on the setting of the environment variable ORACLE_BASE to determine
where it will install the Oracle software. ORACLE_BASE has actually been around for
some time now, but it’s never really been key to Oracle installs. Oracle Database 11g
now uses the environment variable ORACLE_BASE when performing an install to
ensure that the Oracle Database Installer will install the Oracle Database 11g
software in a directory location that is compliant with Optimal Flexible Architecture
(OFA). If you forget to set ORACLE_BASE, you will have the opportunity to set the
value of ORACLE_BASE in the installer window (a default is supplied, which you
should check carefully). Also ORACLE_BASE will now be stored in your Oracle
inventory location. This is so that the Oracle Universal Installer (OUI) can reference
ORACLE_BASE when installing other Oracle products.

NOTE
It is recommended that you set the ORACLE_BASE
environment variable in 11g, as Oracle indicates
this environment setting will be required in the next
major release of the Oracle RDBMS.

If you are installing Oracle Clusterware 11g, you will need to enter the Oracle
Cluster home location and ORACLE_BASE locations when running the Universal
Installer. Both the Cluster home and ORACLE_BASE will default to the same
directory level. You will need to change the Oracle Cluster Home location so that
it is not under the ORACLE_BASE location, or the install will fail with an error.

NOTE
Did you ever notice that when you install the
companion disk components that have their own
ORACLE_HOME, it is that ORACLE_HOME that gets
put in the path first? This can cause problems if you
don't set up your networking in the ORACLE_HOME
of the companion disk.

4 Oracle Database 11g New Features

The Database Configuration Assistant
The manual process of creating a database in Oracle Database 11g has not
changed. The steps remain pretty much the same. However, when you are creating
an Oracle database with the Oracle Database Configuration Assistant (DBCA), you
might notice that a few things have changed.

In general the DBCA interface is not much different than what was available in
Oracle Database 10g. One new feature is that when you are creating a database a
new screen appears asking you if you want to use the enhanced 11g Database
security settings, which include new default auditing settings and enabling the
default password profile, or to use the pre-11g default security settings. See Chapter 4
for more information on these and other new security features. Other DBCA-related
changes include:

 ■ Oracle SQL Developer will be installed if you used a template-driven
database install from the DBCA.

Oracle XML DB will be installed in all Oracle databases when they are ■
created.

The Oracle Data Mining schema is created as a part of catproc.sql by ■
default, and is no longer an option in the DBCA. Oracle Data Mining also
no longer appears in the DBA_REGISTRY view.

Oracle Database 11g has also made it easier to switch managing your database
between Database Control and Oracle Grid Control. The DBCA can now be used to
easily switch between managing with DBCA and Oracle Grid Control.

Upgrading to Oracle Database 11g
Oracle Database 10g provides a fairly easy upgrade path for users of older Oracle
versions, and in fact, I think the upgrade process is slightly easier when moving
from Oracle Database 10g to Oracle Database 11g than it was if you moved from
Oracle9i to Oracle Database 10g! In this section we will provide an overview of
each of the upgrade processes. We will discuss what versions you can upgrade
from, and we will then discuss the different supported upgrade methods: the
Database Upgrade Assistant (DBUA), manual upgrades, and export/import and
data copy commands. However, before we dive into the specific coverage, I want
to take a moment to discuss a few issues revolving around upgrades that I’ve seen
come up before, and try to save you some time asking questions and making
mistakes.

Chapter 1: Oracle Database 11g Getting Started 5

Saving Time When Upgrading
I’ve been involved with the Oracle database product for a long time now—as of this
writing not quite, but almost, two decades. I’ve done upgrades of every version
since Oracle 7 (and have written books like this since the Oracle 7.3 to Oracle 8
days!). I’d like to share a few thoughts with you about the upgrade process that I
think might help you save some time in the long run. So, let’s get started.

Please, Backup!
There is perhaps nothing more important to the entire upgrade process than backing
up the database first thing. Please make sure you do this, and make sure it’s a part of
every database upgrade plan that you produce!

Learn and Educate
This might seem obvious at first; you would think that everyone would take the time
to learn about a new piece of software before they haul off and install it. It is so sad
to say how many people I’ve talked to who proudly stated “We are on version x”
and yet they know little or nothing about what is available on version x. Upgrading
to a new version of Oracle is about more than just being able to still get support!
Granted, caution must be exercised with the use of new features, but oh, some are
so irresistible when you finally learn about them.

I remember when I first saw that you could rename a table, and you could
rename a column in Oracle. Oh happy day!! No more dropping tables and re-
creating them just to rename a column! What a great feature, and if I had not taken
the time to learn about that feature, I might have wasted so much time doing things
the “old” way. How much time do you have to burn?

So, then the question is, how do you figure out what you need to know about!?
Well, you have purchased this book, which is a heck of a good start. Kudos to you on
your wisdom to this point! What else should you do? Let me offer these suggestions:

 1. Read the manuals. Most Oracle manuals now have “new feature” sections
in them that highlight the new features in the database that are part of the
subject area of that manual. These often have links to the areas in the manual
with more information. This is particularly helpful if you are using one of the
ancillary Oracle features that we do not cover in any depth in this book.

 2. Read (or skim) the upgrade scripts that Oracle uses. Yeah, it may be tedious
stuff, but there can be some really interesting information in there.

 3. Read (or skim) sql.bsq and its related scripts. This is the queen mother script
that the create database command runs. Often you can find little tidbits of
information in here that will teach you something new.

6 Oracle Database 11g New Features

 4. After installing a new version of the Oracle Database, use the Database
Creation Assistant to create your first database. When you do so, make sure
to have it create the scripts that it will use for that database creation. Then
after the database creation is complete, review the scripts that it created.
Often in these scripts you can see new feature-related parameters being
used, or even simple changes in the way you might want to create your
Oracle databases. Often you can learn a lot from these scripts.

Don’t Upgrade When Installing Oracle Database 11g
When you install Oracle Database 11g for the first time, it will display a list of the
databases currently on your system and ask you if you want to upgrade them.
I cannot tell you what a wholly bad idea this is, and how you should never ever
allow Oracle to upgrade databases during an install. There are a number of reasons
for this. First of all, you never know if the install will work correctly. There could be
a lot of reasons why the installer might fail, but the bottom line is it can.

Of course, you hope that if it fails, the installer won’t try to upgrade the databases—
but never trust anything to work right if the installer fails. Another issue is that the
installer might install Oracle successfully, but the migration might fail because your
system is not really ready to migrate your database yet. Perhaps there are patches
that need to be installed, or you missed some system configuration that needs to be
updated (for example an obscure OS patch) before you haul off and start mucking
with databases.

I strongly recommend that you install Oracle Database 11g first. After you have
done that, run the DBCA (separately) and allow it to create a starter database for you
under your new Oracle Database 11g Oracle Home. Make sure the database comes
up, and run a few test queries against it. Also make sure your networking is working
correctly. I’d create a database link in your test database and make sure that Oracle
Net is working right. This kind of naturally leads us to our next topic.

Test, Test, Test…
Testing might seem like the natural thing to do, but I’ve seen testing get the short
end of the stick before, so I have to mention it here. For important applications it’s
not enough just to upgrade a database, start it up, and then run a few queries and
anoint it as ready for prime time. While Oracle does a lot of testing on its products,
I have yet to see one database product that didn’t have a bug or two (or tens or
hundreds!) in it. In fact, in my first week of testing the production version of 11g
Release 1, I found and opened two different bugs.

As a result, regression testing of your important applications is critical before
you migrate your production database to Oracle Database 11g. I’ve seen more than
one upgrade project come to a screeching halt because of an Oracle bug, and I’ve
seen production upgrades have to be rolled back for the same reason.

Chapter 1: Oracle Database 11g Getting Started 7

Another area where testing becomes really important is in the arena of
performance. Changing Oracle versions can and does cause execution plans to
change. Often these changes are for the better, but sometimes they can be for the
worse. One shortcoming in test plans that I’ve seen is that they test functionality, but
never volume. So you get the right answers, but once 250 concurrent users are
asking the same question, it takes two hours to get a response. So, test in volume
conditions, with real data volumes and realistic queries. Oracle Database 11g offers
some new features that might help you in this regard, such as SQL Database Replay,
which we discuss in Chapter 5 of this book.

No, That’s Not an Available Upgrade Path (or RTFM)
I’m getting older, my kids are getting more expensive, and I think I’m getting crankier
as time goes on. So, if I sound a bit crotchety here, please understand. Over the years
I have kept my eyes on the different Oracle newsgroups (Oracle-L, LazyDBA, and the
Quest Pipelines are among my favorites). I love these newsgroups because they offer
such a sharing of knowledge and really have the opportunity to help people solve
problems more quickly than ever. But…

Some people have become lazy. They make assumptions; they don’t read the
manual or briefly scan it and don’t really catch the details. Some people seem unable
to research and make semi-educated guesses, and then seem even more unable to
actually test these guesses. There are people out there who literally seem to think that
Oracle leaves it up to them to craft an upgrade strategy to move their database.

For example, I’ve seen more than one person ask if you could migrate to version x
of the database by using transportable tablespaces. The answer is: even if you could,
check the Oracle upgrade manual; it’s not a supported upgrade method. If you do,
you are a test pilot and Oracle isn’t likely to provide you with much support. It’s kind
of like me pulling the engine out of my airplane and reinstalling it without an A&P
(Airframe and Powerplant) mechanic certifying the work was done correctly, and
without reading the maintenance manual to figure out how much torque to apply to
the engine mount bolts. Yeah, I can probably do it, but why take the risk and why
guess at it when the information is right there for me?

So, please read the upgrade manual. If you are not well acquainted with the
Oracle upgrade process (it has not changed much for you old hands but read through
it once for the Gipper, OK?), then read it again. Having done that, you won’t ask a
question in a public forum that clearly indicates you have not read the manual, and
I won’t have to flame you. OK, I’m not that crotchety yet, but there are those who
will flame you if you have not read the manual.

Upgrade Prerequisites
Depending on the other Oracle software you may be using, database upgrade
prerequisites will vary. Typical prerequisites would include upgrading Oracle
Clusterware and upgrading ASM before you upgrade databases using these components.

8 Oracle Database 11g New Features

Again, carefully read the upgrade documentation before you attempt any upgrade to
ensure that you are following the correct upgrade path for your configuration.

Another area to pay special attention to is the OS and the Oracle related
requirements for OS versions and patches. In many cases, the Oracle Universal
Installer (OUI) will point out if you are not meeting the minimum required
configuration. There may well be cases in which OS patches need to be applied and
the OUI is not aware of these requirements. Check with Oracle Metalink and your
vendors for more information on this issue.

Give Back to the Community
I suppose I could bring in a celebrity at this point to give this message, but I’ll do
it anyway. Please give. Give generously. The Oracle community needs your
experience with this and every new version that comes out of the chute. If you
have problems, don’t just find a workaround and move on. Let us hear about them.
Use the newsgroups I mentioned before and share your problems with the Oracle
community because it makes us stronger. Please, don’t just give up if something
doesn’t work right; open a service request with Oracle and get them to fix it and
share your discovery with the world. Blogs are great things, and I’d hope that after
only a few hours of Oracle Database 11g production availability we will see blogs
on your experience show up and fill Google search results unto eternity. Please,
give until you can give no more—we will all be thankful.

Supported Upgrade Paths
Generally Oracle Database 11g supports upgrades from Oracle9i Releases 1 and 2,
and Oracle Database 10g Releases 1 and 2. Table 1-1 provides more detail on the
upgrade support for Oracle Database 11g.

TABLE 1-1. Oracle Database 11g Supported Upgrade Paths

Your Database Version
Requirements for Upgrading to Oracle
Database 11g

Any Oracle version < = 9.0.1.4 Upgrade to Oracle Database 10.2 using a
supported upgrade path(s). Direct migration
to Oracle Database 11g is not supported
unless you use import/export or the
SQL*Plus copy method.

Oracle 9.2.0.4 (or higher),
Oracle Database 10.1.0.2 (or higher)
Oracle Database 10.2.0.1 (or higher)

Direct upgrade via supported upgrade
methods is supported.

Chapter 1: Oracle Database 11g Getting Started 9

Supported Upgrade Methods
Oracle Database 11g supports four different methods of upgrading your database:

 ■ The Database Upgrade Assistant (DBUA)

Manual database upgrade ■

Export/import ■

Data copy ■

In the next sections we will look at each of these methods in detail.

Upgrade with DBUA
I must confess up front that I don’t use the DBUA much. I’m a command-line kind
of guy, and so I prefer the more granular control that I get with the manual upgrade
process. However, the manual upgrade process can be tedious, so in my opinion
the DBUA is a nice tool to have when you have a number of databases you need to
upgrade, and you want to do the upgrade with as little muss and fuss as possible. In
this section we will introduce you to the DBUA and then we will talk about the logs
created by the DBUA that you can review after you have upgraded the database.

Using the DBUA

NOTE
If you have multiple versions of Oracle installed,
make sure you are running the correct version of
DBUA (use the DBCA executable in the ORACLE_
HOME directory of the Oracle Database version you
are upgrading to). Although you will get an error
message if you are running the wrong version, it can
take some time for that message to appear.

The DBUA will step you through the process of doing a database upgrade of
both a clustered Oracle database and a nonclustered Oracle database. The DBUA
also provides the option to upgrade an ASM instance.

The DBUA will make various recommendations as to configuration changes that
you might want to make as a part of the database upgrade. For example, if your
optimizer statistics are stale, DBUA will recommend that you exit the DBUA and
update those statistics before you do the upgrade.

10 Oracle Database 11g New Features

NOTE
If you did not make the required time zone patch
updates to your Oracle9i or Oracle 10g database,
the DBUA will fail to upgrade your database until
you have applied these patches!

After you have started the DBUA, it will present you with a list of databases you
can upgrade as seen in Figure 1-1. This list shows you the ORACLE_HOME and
database name of each Oracle instance on the system. Because this list is generated
from the /etc/oratab file in UNIX OS’s or the list of available Oracle Database
Services in Windows, you will find all Oracle databases on your system included on
the list (even those that may not be functioning). From this list, select the database
you wish to upgrade

After you have started the DBUA, it will present you with a list of databases you
can upgrade as seen in Figure 1-1. This list shows you the ORACLE_HOME and
database name of each Oracle instance on the system. Because this list is generated
from the /etc/oratab file, you will find all Oracle databases on your system included
on the list (even those that may not be functioning). From this list, select the database
you wish to upgrade.

The DBUA will prompt you to enter a value for the new diagnostic_dest parameter.
This parameter replaces the old background, user, and core dump destination
directories. The DBUA will provide you with a default destination that you can choose,

FIGURE 1-1. The Database Upgrade Assistant: select database screen

Chapter 1: Oracle Database 11g Getting Started 11

or you can enter an alternative directory location for these files to be stored in. We will
discuss the disgnostic_dest parameter and other new parameter-related information
later in this chapter.

As with previous versions of the DBUA, you can choose to have Oracle back up
the database before the upgrade, or you can indicate that you have already backed
up the database. If you allow the DBUA to back up the database, then the backup
will be a cold backup, so be aware that you will be adding to the total time the
database will be down for the upgrade if you are going to have DBUA perform the
backup.

If you want to perform your own backup, I’d suggest you use Recovery Manager
(RMAN) to perform the backup. Oracle Press has a great book on RMAN called
Oracle Database 10g RMAN Backup and Recovery that can guide you on your
RMAN backup. Here is an example of an RMAN command that you can use to
back up your database:

RMAN> shutdown immediate
RMAN> startup restrict
RMAN> backup database plus archivelog
format 'backup_destination_here' tag before_upgrade;
RMAN> shutdown immediate
RMAN> startup

NOTE
Of course, backups are very important, particularly
when an upgrade fails for whatever reason. I’d prefer
to back up the database before the upgrade. If you
are using RMAN you can validate the backup and
make sure it’s complete. If you have the time and
resources, I’d do a test restore on the backup just to
cover yourself completely.

The DBUA also gives you the option of moving your database datafiles during
the upgrade process if you so desire. You can move them from file system to file
system, from a file system to ASM, or from ASM to a file system. Personally, I think
I’d do this independent of an upgrade, but that’s just me.

The DBUA also gives you the option of configuring the Flash Recovery Area (FRA).
This is particularly handy if you are moving from Oracle9i, which did not offer the
FRA, or if you did not use the FRA in previous Oracle Database 10g databases.

Another choice you will make from the DBUA is the option to recompile invalid
objects after the upgrade. This is similar to running the utlrp.sql package from the
SQL command line. The default option is to recompile packages, and I recommend
you take this option. Finally the DBUA provides the option to backup the database
(again, I prefer to do this before hand, manually). Having decided to backup or not

12 Oracle Database 11g New Features

backup, DBUA will provide a summary of your choices, and warnings related to the
database upgrade. You simply click on the finish button, and your upgrade will
begin! Note that once you start the upgrade, you will not be able to use the database
until the upgrade is complete. Figure 1-2 is an example of the DBUA window as it is
upgrading a database.

DBUA-Related Logging
Notice at the bottom of the DBUA output shown in Figure 1-2 that the logging
directory for the DBUA is listed (in our case $ORACLE_HOME/cfgtoollogs/dbua/db_
name). In this directory you will find the logs related to a DBUA upgrade. After each
upgrade you should review the logs in this directory for errors after the migration is
complete.

Note the location of the log files in the DBUA window. The logs can be very
handy in solving upgrade problems should that arise. The DBUA will create a
number of logs in the directory listed. Note that each separate upgrade of a database
will have its own log directory (thus, old logs are not removed). For example, in
Figure 1-2 the DBUA has put logs into the $ORACLE_HOME/db_1/cfgtools/dbua/
rob10dbua/upgrade2 directory. In this case we see that the rob10dbua database has
had one upgrade attempt previous to this upgrade attempt (the first upgrade attempt
would be in the upgrade1 directory).

FIGURE 1-2. The Database Upgrade Assistant: progress screen

Chapter 1: Oracle Database 11g Getting Started 13

Within the DBUA log file directory there are a number of logs you might be
interested in. Table 1-2 provides a list of the log files of most interest to you.

How Do I Know If the Upgrade Is Successful?
Of course, if you watch the DBUA to completion, then you will know the upgrade
is successful (and that you can patiently outwait a very boring bit of screen output).
The DBUA will provide you with the screen seen in Figure 1-3 which indicates
success.

After you click on OK, the DBUA will display the Upgrade Results page. This
page provides summary information about the completed upgrade that includes

Arup Says…
I find it extremely useful to let the log files scroll by as the entries are written to
them. In Unix-based systems, it is rather trivial. A simple command in another
terminal, tail -f <logfile>, shows a continuous display of the tail end of the file.
As new material is added to it, I see it. This gives a little bit more educated
insight into the process than just looking at the upgrade screen with a slider bar
and a percentage indicator.

TABLE 1-2. Oracle Database 11g DBUA Logs of Interest

Log Name Purpose

UpgradeResults.html This is a summary of what the DBUA intends to upgrade.
This HTML file is displayed by the DBUA before the upgrade
begins.

Trace.log Provides detailed tracing information on the entire upgrade
process. Any errors reported by the DBUA will be recorded in
this log.

Oracle_Server.log This file (which can be quite large) provides details of the
execution of the entire migration project. If an error occurs
you can find more details in the text of this file. If something
in the upgrade fails, this is where you are likely to find
information pertinent to the failure.

Post_Upgrade.log Log file for details on post upgrade operations. You can look
in this file to determine if the upgrade was successful or not.

14 Oracle Database 11g New Features

information including the new ORACLE_HOME location, parameters that have been
added or updated, and parameters that have been removed. Also you can configure
database passwords from the DBUA Upgrade Results page.

If you feel that the upgrade was not successful in some way, the DBUA Upgrade
Results page also provides the ability to rollback the upgrade. If you had the DBUA
backup the database before it started the upgrade then DBUA will restore the database
and reset configuration parameters. If you did your own backup, then this option will
only reset various configuration settings and you will need to manually restore the
database. Figure 1-4 provides an example of the DBUA Upgrade Results page.

Once your upgrade is complete, you should backup your new database again.
Also, backing up other related database files that have changed (like the listener.ora,
or the tnsnames.ora) would be a good idea after a successful upgrade.

It may be that you will walk away from the process and then during your
absence some horrific thing like the system rebooting will occur (or as happened in
my case, your dog gets under your desk and kills the power). So, how do you know
if the upgrade was successful in this case? You will want to do the following:

 1. Review the Oracle_Server.log (see the previous section for more on this log
file). Look for ORA- errors in the log. If there are any in the log that are not
expected, you will want to check with Oracle and determine what needs to
be done. One problem is that our friends at Oracle have filled this log with

FIGURE 1-3. The Database Upgrade Assistant: Successful Upgrade

Chapter 1: Oracle Database 11g Getting Started 15

comments that include ORA- in them, so a simple search and find will not
work very well. Many times I will just go to the bottom of the log and look
to see if there is an error there or near the bottom. Often if an error occurs it
will be toward the end of the log.

 Another place to look is the Post_Upgrade.log file. This logs all operations
that occur after DBUA has actually upgraded the database. Look at the
bottom of the file for a successful call to dbms_registry_sys.validate_
components call. If it was completed successfully, then odds are that your
upgrade was successful.

 2. Check the alert log of the database for errors during the migration. There
have been some changes to the way the alert log is managed. See Chapter 2
for more details on the new diagnostic_dest parameter and how it impacts
database logging.

 3. You can check the DBA_REGISTRY view to make sure all of the components
have the correct version number assigned to them. If they do not, you will
need to determine why this is the case (it may be as simple as a bug where
one of the components is not getting updated correctly in the registry; that
has happened before).

FIGURE 1-4. The Database Upgrade Assistant: Upgrade Results

16 Oracle Database 11g New Features

Going Back
So, what if you see some errors during the upgrade process and the DBUA failed?
What if you find errors in the logs and you want to go back? If you had DBUA
backup your database, you can have it restore your database. In other cases, you are
going to have to restore the database that failed to migrate yourself.

In the DBUA interface, the last screen will give you an option to recover your
database if there was an error on the DBUA. However, as in our earlier example, if
the power went out and the DBUA session ended as a result, you no longer have
that option. This is one reason I just prefer to do a manual backup/restore. DBUA
does place all the files used to backup/restore your database into the logging
directory. Therefore another option is to go to the logging directory and use the files
contained there.

In the case of a power outage (or perhaps the Blue Screen of Death from
Windows), you need to review the logs carefully. If you can determine from the logs
that the upgrade process failed, you can manually restart the upgrade process from
that point. However, if you prefer to stick to using the DBUA to do your upgrades,
then the best course of action will be to recover the pre-upgrade database image
from the backup you took before the upgrade, and restart the upgrade.

DBUA does a simple copy of your data files when it does a backup rather than
use RMAN. You will find your backup files in the directory ORACLE_BASE/admin/
<database_name>/backup. Here you will find a script file or batch file (the name
varies by platform) that you can run to restore your database to the pre-Oracle
Database 11g version. If you are running the script on Windows, it will also drop
and re-create the Oracle Windows service for you.

If you backed up your database via RMAN before the upgrade, then restoring
the database is as simple as issuing the following RMAN command (note we assume
you tagged your backup with the tag “before_upgrade”).

STARTUP NOMOUNT
RUN
{
 RESTORE CONTROLFILE FROM 'save_controlfile_location';
 ALTER DATABASE MOUNT;
 RESTORE DATABASE FROM TAG before_upgrade
 RECOVER DATABASE NOREDO;
 ALTER DATABASE OPEN RESETLOGS;
}

After the restore is complete, you will need to reset your environment variables
to point to the old Oracle software locations. If you are using Windows you will
need to drop and re-create your Oracle service.

Chapter 1: Oracle Database 11g Getting Started 17

Manual Upgrades
The downside to manual upgrades is that they can be tedious and you have to
manage a number of steps. The upside is that you have a great deal more control
over the upgrade process. If something fails and you are doing a manual upgrade, it
is often much easier to recover from that failure than if you are using the DBUA.

If you are going to opt for a manual upgrade, the first thing I’d do is read the
upgrade manual carefully. I’d then create a checklist for you to follow. Each of the
upgrade steps can vary a little bit by platform (for example, Windows installs require
that you drop and re-create services). So it’s important to read the manual.

In the next sections we will divide the manual process up into pre-upgrade,
upgrade, and post-upgrade sections. In each section we will provide some direction
and insight into that part of the upgrade process. Finally, we will discuss rolling
back the upgrade if that becomes necessary.

Before You Upgrade to Oracle Database 11g
Before you just haul off and run the database upgrade scripts, a bit of pre-planning is
in order. While we present an ordered list in Table 1-3 of pre-upgrade steps to
follow, you must reference the Oracle Database 11g Upgrade Manual as well as the
Readme and other related files for the most current information on the steps to follow
when upgrading. We have found in the past that things tend to change between
different versions (and operating systems), and of course the specific version you are
upgrading to may be different than the version we used when we wrote this book
(we used the first production version of Oracle Database 11g for this book).

Another thing we must mention (again) is that you need to test, test, test (we
actually had 10 pages of the word “test” here, but our editor/publisher decided that
might be a bit much) before you do anything else. Table 1-3 provides a summary of
the pre-upgrade steps that you will want to make sure you take when performing an
Oracle Database 11g upgrade:

You will notice we mentioned the Oracle Pre-Upgrade Information Tool in step 8
in Table 1-3. It is critical to the smooth upgrade of your database that you run this
tool every time you do an upgrade. I have seen cases where the tool was run on
development and test databases without any problem findings being noted, only to
have an upgrade fail in production. This was because the DBA assumed that there
would be no problems with the production upgrade since there were not any
problems in the other upgrades. Don’t make this mistake.

NOTE
If you are upgrading a clustered database, you will shut
down all but one of the instances of the cluster, which
will be the node you upgrade. Check out the Oracle
upgrade documentation for specific actions that might
need to be completed on each node (such as installing
the new software on each node and so on).

18 Oracle Database 11g New Features

Step Action
 1 Read this book! Read the Oracle Database Upgrade guide!

 2 Upgrade your OS and any other vendor software as required to support Oracle Database 11g.

 3 Install the Oracle Database 11g software. I always like to create a little test database after
installing the Oracle software just to make sure everything works right.

 4 Test the upgrade on a non-production database first!

 5 Back up the database. (Earlier in this chapter we provided you with an example RMAN script that
you can use.)

 6 Prepare the new oracle_home location. Copy the old configuration files (SPFILE, IFILE, password
file, and so on) to the new Oracle Database 11g locations. Review these files and update them to
include any new or changed parameters.

 7 Check the redo log file size and ensure that it is greater than 4MB in size. The Oracle Database
11g upgrade process will fail if the online redo logs are smaller than 4MB in size. You can run
this query to determine the size of the online redo logs:
Select name, bytes
FROM V$LOGFILE;

 8 Run the Oracle Pre-Upgrade Information Tool (utlu111i.sql in our version) to determine what you
will need to change in your database to make the upgrade successful. You will find this tool in
ORACLE_HOME/rdbms/admin directory of your Oracle Database 11g software install. Changes
you may need to make include:

a. Remove obsolete database parameters.
b. Adjust parameter settings to reflect minimum values indicated by the output of the pre-

upgrade tool. For example the sga_target parameter might need to be increased.
c. Increase tablespace sizes.
d. You may wish to adjust the compatible parameter to 11.0 so you can use the new features

of Oracle Database 11g after the upgrade. Note that once you modify the compatible
parameter, you cannot change the compatible parameter to a lower setting without
recovering your database to a point in time that was before the change of the compatible
parameter.

 Note that during the upgrade, the compatible parameter must be set to at least 10.0.0. You
can reset it to 9.2.0 after the upgrade if you wish to ensure that you can only use the 9.2.0
feature set.

e. Adjust all paths in the parameter file to reflect the new oracle_home structure as needed.
f. If you are going to upgrade a cluster, make sure cluster_database is set to false for the

upgrade.

 9 Determine if there are any new Oracle parameters that you want to use. Determine if there are
any parameters that you want to change. You will make these changes after the database upgrade.

10 Determine if any users are currently using the CONNECT role. This role is depreciated in Oracle
Database 11g and has all privileges stripped from it except the create session privilege.

11 If you are using OEM, you will want to save your OEM Control Data should you need to
downgrade. Refer to the Oracle Database 11g Upgrade Manual for more information on this
process.

12 Create a listener for the Oracle Database 11g Database. This will need to be done before you can
upgrade to Oracle Database 11g.

TABLE 1-3. Oracle Database 11g Pre-Upgrade Steps

Chapter 1: Oracle Database 11g Getting Started 19

Upgrade to Oracle Database 11g
Once all the pre-upgrade work is done, it’s time for the fun part, upgrading the
database! Cowboys on the American plains might have said “yeeeehhhhaaawwww”
at this point. Again we provide a table with a general list of steps to follow when
upgrading your database. I can’t say it enough—please check out the Oracle
upgrade manual and make sure nothing has changed or that there are no OS-
specific things you need to do. Table 1-4 presents my list.

One of two things, lack of memory or lack of tablespace space, causes many
upgrade failures. If your failure is due to one of these, you can simply correct the
problem (for example, increase memory, extend the tablespace, or enable
autoextend) and then shutdown abort the database. Then restart the database with
the startup upgrade command and rerun the catupgrd.sql script again.

If you have started the upgrade with the catupgrd.sql script and you determine
that for whatever reason you cannot complete it, you will need to restore your
database with the backup you took of it. There is no “flashing back” an incomplete
upgrade.

Re-Run the Upgrade
In the case of an error during a manual upgrade, you can often re-run the upgrade.
Simply follow these steps:

 1. Correct the problem.

 2. Shutdown the database (shutdown immediate).

 3. Restart the database with the startup upgrade command.

 4. Re-start the upgrade process from step 9 in Table 1-4.

After You Upgrade to Oracle Database 11g
Once the upgrade script has completed the upgrade, you are almost done! Now we
need to perform some post-upgrade steps to check the upgrade status and complete
the process. One last time we will provide a table with a general list of steps to follow
when upgrading your database. Also one last time we remind you to first check out
the Oracle upgrade manual and make sure nothing has changed. Table 1-5 gives you
our list.

NOTE
We can’t say it enough: These are the general
steps you will need to take. You must reference the
upgrade guide, and your OS-specific documentation
for the complete enchilada! Don’t cry for me,
Argentina—you must prepare before you do!

20 Oracle Database 11g New Features

Step Action

 1 Shut down the database. You should shut down the database in a consistent
manner using shutdown immediate. If you must use shutdown abort, restart
the database in restricted mode and then do a shutdown immediate.

 2 If you are using Windows, you will need to stop the Oracle service for the
database you are upgrading. You will then use the oradim utility to remove
the service for the database you are migrating. Then use the oradim utility to
re-create the new Oracle Database 11g service.

 3 If you are using UNIX, you will need to make sure your environment variables
are pointing to the new Oracle Database 11g directories. This would include
oracle_home, path, classpath, and ld_library_path as well as any OS-specific
environment variables you may need to set.

 4 Open a command-line window/prompt and change to the ORACLE_HOME\
rdbms\admin directory.

 5 Start SQL*Plus (make sure you are using the 11g version of SQL*Plus!) and
connect to the database as a user with SYSDBA privileges.

 6 From the SQL*Plus prompt, start up the database in upgrade mode using the
following command:
startup upgrade
Confirm that the banner says the database was started with Oracle Database
version 11. There is no need to stop the upgrade process if errors appear
indicating that obsolete initialization parameters are in use. You can correct
those errors after the upgrade has completed.

 7 If you are upgrading from Oracle 8.1.7 or Oracle9i, you will need to create a
sysaux tablespace. Follow the direction in the upgrade guide to complete this
step.

 8 Use the spool command to start spooling the results of the upgrade to a log file.
SQL> spool upgrade.log

 9 Using the catupgrd.sql script, start the upgrade process!
SQL> @catupgrd.sql

Once this script has completed, it will shutdown the database.

10 Restart the newly upgraded database with the startup command.

TABLE 1-4. Oracle Database 11g Upgrade Steps

Chapter 1: Oracle Database 11g Getting Started 21

Step Action

 1 Run any post-install actions required by any ancillary Oracle features that you might
have installed in your database (for example, Oracle Text). These steps will be listed in
the Oracle Database 11g upgrade guide, or in the component-specific user guide.

 2 Run the post-upgrade tool (in our version, utlu111s.sql) to display the status of the
database components. Ensure that all components show a valid status.

 3 Run the catuppst.sql script from $ORACLE_HOME/rdbms/admin. This script contains
upgrade related steps that do not require the database to be started in upgrade mode.

 4 After the catuppst.sql script has completed, run the utlrp.sql script contained in
$ORACLE_HOME/rdbms/admin. Note that catuppst.sql and utlrp.sql can be run at the
same time. After running utlrp.sql, you should make sure that no unexpected objects
are still invalid. SQL that can help you make this determination might include:
SELECT count(*) FROM dba_invalid_objects;
SELECT distinct object_name FROM dba_invalid_objects;

 5 Shut down the database. As before, you should shut down the database in a consistent
manner using shutdown immediate.

 6 Remove any obsolete parameters from the parameter file. Add or change any Oracle
Database 11g-specific parameters you identified during the pre-upgrade steps.

 7 Start up the database with the startup command.

 8 If you are using Oracle Label Security, you will need to run olstrig.sql to re-create the
data manipulation language (DML) triggers on the tables with Oracle Label Security
policies.

 9 Recompile all stored PL/SQL and Java code with utlrp.sql. Check that all packages and
classes are valid.

10 Check the component Registry (DBA_REGISTRY) and make sure that each component
has been properly upgraded.

11 Back up your database.

12 Perform any final post-upgrade tasks as required. Such tasks might include:
a. Upgrading the RMAN Recovery catalog
b. Upgrading any statistics tables that you might have created.
c. Changing passwords for newly created Oracle-supplied accounts.
d. Enabling passwords to enforce case sensitivity.
e. Enabling any other new Oracle 11g features you might wish to use.

Check the upgrade guide for a complete list of possible post-upgrade tasks that you
might need to complete.

TABLE 1-5. Oracle Database 11g Post-Upgrade Steps

22 Oracle Database 11g New Features

Be extra aware of additional things you might need to do depending on what
options you are running. For example, if you are using packages such as utl_tcp,
utl_smtp, utl_mail, utl_http, or utl_inaddr then you are going to want to review
new features revolving around Access Control Lists (ACL) in Oracle Database 11g.
Until you have configured ACL’s in 11g, you will not be able to use these functions
anymore. We discuss ACL’s in chapter 6 of this book.

Rolling Back Your Upgrade to Oracle Database 10g
In America we say, “When all else fails, punt”…. When your newly upgraded
database just isn’t working and you need to go back, what do you do? The most
obvious answer is to restore the backup you took before the upgrade. This is the
simplest and most straightforward way of rolling back an upgrade.

Oracle Database 11g supports downgrading to the 10g major version of the release
that you upgraded from (note that downgrade to 9i is not supported). So, if you went
from 10.1 to 11.1, you can downgrade to 10.1 but not to 10.2. Of course, you will need
to make sure that you have not used any new Oracle Database 11g features before you
downgrade, and the compatible parameter can not have been changed to 11. There are
some version specific downgrade requirements, depending on which version you
upgraded from. Please reference the Oracle Database Upgrade Guide for more details
with regards to downgrading to the version of Oracle you are upgrading from.

NOTE
You can use export/import to downgrade to any
previous version, but that takes a lot of time. We
discuss this topic more later in this chapter.

As a part of the pre-upgrade process, I’d strongly recommend performing a
rollback test where you roll back a test database. This way you will be familiar with
the process. You might also want to talk to Oracle support and check Metalink to
make sure there are no gotchas waiting for you if you have to rollback. The Oracle
Upgrade Manual provides a concise set of instructions on downgrading your Oracle
Database to its previous version.

NOTE
Any time you have to downgrade, you should
consider that you are at risk. If things are bad enough
with the version of the software that you are on that
you have to downgrade, you need to consider that
the software can equally go wrong when you are
trying to use it to downgrade (for example, perhaps a
bug has introduced block corruption). When crafting
an upgrade plan, you must consider the possibility
that downgrading will not be an option.

Chapter 1: Oracle Database 11g Getting Started 23

Using Export/Import for Upgrades and Rollback
You can use the Export/Import utilities (or Data Pump if you are using Oracle
Database 10g Release 1 or later) to perform both upgrades and rollbacks if you
prefer. In this section we will discuss both of these options, starting with using
export to upgrade the database. We will then discuss rolling back using export/
import. While most of these sections will also apply to using Oracle Data Pump, our
final section will address the few issues that differ when Data Pump is in use.

Upgrade with Export/Import
I’ve talked to a number of DBAs who prefer to use the export/import method of
upgrading to a new database. Using export/import is a supported migration method,
as is using the Oracle Data Pump utilities introduced in Oracle Database 10g. For a
smaller database, or for cases where you would like to move your database to
another environment, export/import can be a good solution. Smaller is key here
though, as the export/import process can take a very long time on larger databases,
certainly much longer than using the DBUA or manually upgrading a database.

The export/import method requires that you have first created an Oracle
database. You can easily create a database with the Oracle Database Configuration
Assistant, or manually if you prefer. Once that is done then you can export the
database from the database to be upgraded, and import it into your new Oracle
Database 11g database.

Export/import comes in very handy if your database is at a version of Oracle that
does not support a direct upgrade path to Oracle Database 11g. This can reduce the
time to upgrade the database, since you don’t need to perform multiple upgrades. I’ve
also run into cases in the past where we could not find the CDs to the intermediate

Arup Says…
Before you upgrade, you should create a script to create the control file. You
can do it very easily by issuing alter database backup controlfile to trace. This
command will generate a trace file in the user_dump_dest directory. Locate that
file, open it, trim off all the fat from the top (the stuff like the Oracle version,
date, and so on) and save it in some location as a file named cr_cntfile.sql. This
file is a script to re-create the control file. If all else fails, you can at least create
a control file from this script to restore the database to the previous version. If
that is not reason enough, consider the contents of this script file: It contains the
database parameters like maxdatafiles; the names of all the redo log and data
files; temporary tablespace files; database characterset, and many other things.
Think of this as a quick documentation of the database. You should keep this
file and the pre-11g initialization file in some safe location.

24 Oracle Database 11g New Features

version of Oracle that we needed to upgrade to, so we just opted to export and
import. This was just a much easier solution.

Exports from lower versions are always upward compatible. So if you are
migrating from a 7.3 database to an 11g database via export, there should be no
problems.

Downgrade with Export/Import
Downgrading via an export, such as when you are trying to roll back from an
upgrade, is a different issue. In these cases you need to make sure you are using the
correct version of the Oracle export/import utility. The general rule is that when you
are exporting from a higher version of the Oracle database with intent to import the
file into a lower-level Oracle database, then you should use the lower version of the
export and import utilities. For example, to export from Oracle Database Version
11g to Oracle Database Version 10g, you would use the Oracle Database 10g
versions of export and import.

Along with making sure you use the correct version of the export/import utilities,
you will also need to make sure that you have the correct version of the export views
loaded in the database. This only applies in cases where you are exporting from a
newer database with the intent of importing the data into an older database. For
example, suppose you intend to export from Oracle Database Version 11g to Oracle
Database Version 10g. In this case, you would first load catexp.sql from the Oracle
Database 10g ORACLE_HOME into the Oracle Database 11g database. Once
the export is complete, run catexp.sql from the Oracle Database Version 11g
ORACLE_HOME in the database to update the views to the correct version of
Oracle.

One more issue with regard to rolling back with export/import is the issue of
object compatibility. If you have started to utilize some of the features of Oracle
Database 11g in your schemas and you decide you need to roll back the database
to an earlier version, you might be in for a nasty surprise. For example, if you
exported from Oracle 8.0.5 into an Oracle Database 11g database and then created
a table using list partitioning, you would have a problem if you tried to rollback to
Oracle 8.0.5. The bottom line is: be careful after you upgrade if you make any
schema changes using new Oracle Database 11g features.

What about Oracle Data Pump?
The biggest difference when using Oracle Data Pump has to do with the issue of
version differences. Data Pump makes it so much easier to move data between
different versions of the database. Oracle Data Pump comes with a version
parameter that allows you to define the version of the database that you are creating
the export for. So, for example, if you are exporting from an Oracle 11g database
and you wish to import that file into an Oracle 10.2.0 database, you would include

Chapter 1: Oracle Database 11g Getting Started 25

version=10.2.0 in the expdp command line. As with export/import, Oracle Data
Pump can read a dump file created by an older version of the database when
importing into a newer version.

Upgrade Using Data Copying
Oracle Database 11g also supports upgrades via the SQL*Plus copy command
through database links. This is a handy way to upgrade smaller databases, or if you
wish to only upgrade a small subset of a given schema (or perhaps subsets of rows
in a given schema).

If you choose this approach you will have to create the new Oracle Database 11g
database along with the tablespaces, the needed schemas/users, and the database
links before you could begin the migration process.

Oracle Parameter Changes
Each new Oracle version includes changes to the parameters within the database.
This section covers these changes so you can consider them in your upgrade plans.
In this section we will cover new parameters, deprecated parameters (ones that still
work but you need to consider replacing), and obsolete parameters (ones that no
longer work and you need to remove). We will only be covering the more
commonly used parameters in this section. We will not cover changes to hidden,
obscure, rarely used or OS-specific parameters.

New Parameters
A number of new parameters are available in Oracle Database 11g. A number of
these new parameters will be covered in various parts of this book. Parameters
discussed in this book are marked with the symbol (*). You can reference the index
for specific pages where these parameters are discussed. The new parameters in
Oracle Database 11g include the following:

 ■ asm_preferred_read_failure_groups (*)

client_result_cache_lag (*) ■

client_result_cache_size (*) ■

commit_logging (*) ■

commit_wait (*) ■

control_management_pack_access(*) ■

db_lost_write_protect ■

26 Oracle Database 11g New Features

db_securefile ■

db_ultra_safe ■

ddl_lock_timeout (*) ■

diagnostic_dest (*) ■

global_txn_processes ■

java_jit_enabled (*) ■

ldap_directory_sysauth ■

memory_max_target (*) ■

memory_target (*) ■

optimizer_capture_sql_plan_baselines (*) ■

optimizer_use_invisible_indexes (*) ■

optimizer_use_pending_statistics (*) ■

optimizer_use_sql_plan_baselines (*) ■

parallel_io_cap_enabled ■

plscope_settings ■

redo_transport_user ■

resource_manager_cpu_allocation ■

result_cache_max_result (*) ■

result_cache_max_size (*) ■

result_cache_mode(*) ■

result_cache_remote_expiration(*) ■

sec_case_sensitive_logon(*) ■

sec_max_failed_login_attempts (*) ■

sec_protocol_error_further_action ■

sec_protocol_error_trace_action ■

Chapter 1: Oracle Database 11g Getting Started 27

sec_return_server_release_banner ■

xml_db_events ■

Deprecated Parameters
Deprecated parameters are parameters that Oracle eventually plans on making
obsolete. They work normally, but warnings will appear as the database is starting
up on the console and in the database alert log. You can also determine if a
parameter is deprecated by using the column isdeprecated in the v$parameter
view. If the parameter is deprecated, this column will be set to TRUE.

Three parameters in Oracle Database 11g are deprecated (since Oracle
Database 10g Release 2) in favor of the diagnostic_dest parameter. These are

 ■ background_dump_dest

core_dump_dest ■

user_dump_dest ■

Remaining deprecated parameters (since Oracle Database 10g Release 2) include:

 ■ commit_write This parameter is replaced by the new commit_logging and
commit_wait parameters.

instance_groups ■ See Chapter 10 for more information on Real Application
Cluster changes in Oracle Database 11g.

log_archive_local_first ■

plsql_debug ■ Replaced by plsql_optimize_level

plsql_v2_compatibility ■

remote_os_authent ■

standby_archive_dest ■

transaction_lag attribute ■

NOTE
You can find a complete list of deprecated
parameters from various versions of Oracle in the
Oracle Database Upgrade Guide for 11g Release 1.

28 Oracle Database 11g New Features

Obsolete Parameters
A database with obsolete parameters will start, but warnings on the console and in
the alert log will appear. Parameter in Oracle Database 11g that have been made
obsolete include:

 ■ Ddl_wait_for_locks

Logmnr_max_persistent_sessions ■

Plsql_compiler_flags ■

Undo_Management Parameter Madness
One final parting thought on changes to parameters in Oracle Database 11g. That is
that the undo_management parameter default is now AUTO. Manual undo is still
available but you will have to enable it in order to use it.

Oracle Dictionary View Changes
Amazingly, no static data dictionary views were deprecated in Oracle Database 11g.
The v$datafile view had the column plugged_in removed. A large number of new
views have been added. Review the Oracle Database Reference manual for more
information on the different views that have been added.

Additionally, Oracle Database 11g does not deprecate any dynamic views
either. A large number of new views have been added. Review the Oracle Database
Reference manual for more information on the different views that have been
added.

Arup Says…
I strongly recommend setting the parameter diagnostic_dest when you upgrade
the database or create a new database under Oracle 11g. Oracle ignores the
parameter background_dump_dest, even if it is defined in the initialization
parameter file. Instead it assumes the parameter diagnostic_dest to be
$oracle_base. In that directory, it creates a subdirectory, diag; then another one
under that, rdbms; yet another subdirectory under that, <database name>; and
so on, and stores the text alert log there. So don’t be surprised if you suddenly
find the alert log of the older database not being updated any more. It will be
under the diagnostic_dest directory.

Chapter 1: Oracle Database 11g Getting Started 29

End of Line
The word Summary or Chapter Summary seems so old fashioned. “End of Line”
therefore will be my summary at the end of these chapters. For those of you who
don’t know, “End of Line” was used in the movie Tron. The MCP would say “End of
Line” after finishing his communications.

Thus we are at End of Line for this chapter. We have discussed the rather
involved process of upgrading to Oracle Database 11g. We have discussed both
automated upgrades and manual upgrades, and hopefully I’ve given you a proper
feel for each, so you can decide which way you want to go. Successfully finishing
an upgrade is ultimately satisfying. Successfully finishing the upgrade of 200+
databases is wholly satisfying.

Now, get out there and upgrade those databases and read the rest of this book to
figure out what great things lie in wait for you with Oracle Database 11g!

End of line…

This page intentionally left blank

CHAPTER
2

Oracle Database New
Management Features

31

32 Oracle Database 11g New Features

hey say the winters in Russia are long and cold. I must say that this
chapter kind of feels like a Russian winter. It’s long, and may seem a
bit dry instead of cold, but it’s full of important Oracle Database 11g
stuff. Oracle Database 11g has a number of new features and
enhanced functionality in it that simplify database management. These

features include:

 ■ Automatic Storage Management (ASM)

Automatic Memory Management ■

Automatic Database Diagnostic Monitor (ADDM) ■

Automatic Workload Repository (AWR) ■

Scheduler AutoTask automated maintenance tasks ■

Parameter file management changes and new features ■

Resource Manager ■

Finer-grained dependencies ■

DDL WAIT ■

Add column with defaults ■

Let’s start by looking at new features and changes related to ASM.

ASM-Related Changes and New Features
Automatic Storage Management (ASM) has a number of new features that are
designed to make using ASM easier and more efficient. New ASM features include:

 ■ New documentation

ASM disk group attributes ■

ASM fast disk resync ■

ASM compatibility attributes ■

ASM preferred mirror read ■

ASM rolling upgrade ■

Other ASM enhancements ■

New SYSASM role ■

 T

Chapter 2: Oracle Database New Management Features 33

New ASM-Related Documentation
Oracle Database 11g has added additional documentation dedicated to storage
management. The Oracle Database Storage Administration Guide is now a part of
the overall database documentation set and covers installing, configuring, and using
ASM in great detail.

ASM Disk Group Attributes
A new ASM attribute clause is available that allows you to assign attributes directly
to ASM disk groups (as opposed to using templates). Some of these attributes already
existed in Oracle Database 10g, but there are also new attributes you can assign to
a diskgroup (which we will discuss in later sections in this chapter), and the attribute
clause is new. Both the create diskgroup and the alter diskgroup commands allow
you to define or modify these settings as required. The following table shows a list of
the attributes you can set with the new attribute clause.

You can query the V$ASM_ATTRIBUTE view to see the individual attributes
assigned to a given disk group. Here is an example:

Select group_number, name, value
from v$asm_attribute

Attribute Description

au size This is the allocation unit size that defaults to 1MB. This
attribute can only be set when the disk group is created. The
AU size can be defined using any power of 2 (1,2,4, 8, etc.)
from 1M to 64M. For example, 4M would be 4194304.

compatible.rdbms See the section “ASM Compatibility Settings” later in this
chapter. Example ‘11.0’. The default value is 10.1. This value
cannot be rolled back to a previous, lower version setting.

compatible.asm Defines the format of the data on the ASM disks. See the
section “ASM Compatibility Settings” later in this chapter.
Example ‘11.0’. The default value is 10.1.

disk_repair_time Causes the resync process to begin to keep track of changes to
disk extents that belong to an offline disk. See the section “ASM
Fast Disk Resync” later in this chapter. Valid values are from 0
to 136 years. Support for this attribute is only available if both
compatible attributes (compatible.rdbms and compatible.asm)
are set to 11.1 or higher.

34 Oracle Database 11g New Features

order by group_number, name;
GROUP_NUMBER NAME VALUE
------------ -------------------- --------------------
 1 au_size 1048576
 1 compatible.asm 11.1.0.0.0
 1 compatible.rdbms 11.1.0
 1 disk_repair_time 600M

ASM Fast Disk Resync
Oracle Database 11g introduces ASM fast disk resync. This new feature allows you
to resynchronize ASM disks within an ASM disk group with a surviving disk group
after a failure group becomes unavailable for a period of time (for example, due to a
disk controller failure). As long as the failure does not cause the attached disk media
to become corrupted, ASM fast disk resync can resynchronize the missing disks as
soon as the interruption is corrected. The time to perform the resync is dependent
on a number of factors, but it often can be much quicker than rebuilding the entire
disk group. During the resync operation your ASM disks can be fully operational.
You should consider that there will be performance degradation during the time of
the disk repair. Also you will need to consider the loss of redundancy during the
overall outage and resynchronize time.

Typically, ASM will drop a disk not long after it has been taken offline. To
enable the use of fast disk resynchronization (and prevent the disk from being taken
offline), you will need to set the disk_repair_time attribute for a given disk group.
When the disk_repair_time attribute is set, the resync process will begin to keep
track of changes to disk extents that belong to an offline disk. When the disk is
brought back online, the resync process will synchronize the disk and bring it back
into the disk group.

You define the disk repair time in units of minutes or hours (using m/M or h/H to
indicate the unit). You can also define partial hours by use of a decimal indicator (for
example, 3.5H). The default (if you set the disk_repair_time attribute without a time
setting) is 3.6 hours if you do not indicate a time in the disk_repair_time attribute (so
if you are using the default, you better hustle when fixing those bad disk cables!). If
you stock disk cards, cables, and the like in your computer room and you sleep on a
cot not far away, then 3.6 hours may be long enough. However, if you are like me
and you live a fair distance away and your outages always happen at hours that are
not conducive to getting replacement hardware within 3.6 hours, you might consider
increasing the size of this attribute. The repair time will reset after a disk is brought
back online; therefore, if it goes offline again, the clock starts counting from 0.

If a disk goes offline and the disk repair time elapses, then the disk will be
dropped. If you have a disk that goes offline and you want to drop it before the
repair time expires, you can issue the alter diskgroup ... disk offline statement using
the drop after clause.

Chapter 2: Oracle Database New Management Features 35

NOTE
You cannot set a disk_repair_time attribute for a disk
that is already offline.

Here are some examples of setting a disk group’s disk repair time attribute:

ALTER DISKGROUP DG1 SET ATTRIBUTE 'DISK_REPAIR_TIME'='18H';
ALTER DISKGROUP DG2 SET ATTRIBUTE 'DISK_REPAIR_TIME'='12.5H';
ALTER DISKGROUP DG3 SET ATTRIBUTE 'DISK_REPAIR_TIME'='600M';

ASM Compatibility Settings
Oracle Database 11g provides for granular control of compatibility with regard to
ASM disk groups. This is done through the setting of two different compatibility
attributes via the alter diskgroup command. The first is the Oracle disk group
compatibility attribute. The Oracle disk group compatibility attribute setting
defines the format of the data on the ASM disks, and should always be equal or
greater than the compatibility parameter of the Oracle database accessing the ASM
disk. The compatible.asm attribute must always be set to a value that is equal to or
greater than the compatible.rdbms attribute. Once this attribute is set, it cannot be
rolled back.

You set the Oracle disk group compatibility setting via the alter diskgroup
command setting the compatible.asm attribute as seen in this example:

ALTER DISKGROUP DG1 SET ATTRIBUTE 'compatible.asm'='11.1.0';

You can also set this parameter when using the create diskgroup command as
seen here:

CREATE DISKGROUP dgroup4 EXTERNAL REDUNDANCY
DISK '/oracle/asmdata/asm_dgroup1_04.asm'
ATTRIBUTE 'compatible.asm' = '11.1';

The second attribute is the Oracle database compatibility attribute, which is
defined by setting the ASM disk group compatible.rdbms attribute. This attribute
defines the minimum version of an Oracle database that can mount a given disk group.
This attribute should be set to a value that is equivalent to the lowest compatibility
setting of any Oracle database that will be mounting that disk group. Once this
attribute is set, it cannot be rolled back since it has implications on the format of the
messages that the ASM instance and the associated database instances are passing back
and forth. Oracle does allow you to roll forward the setting, obviously.

36 Oracle Database 11g New Features

Note that each disk group can have its own compatibility settings, and thus
multiple versions of the Oracle database can connect to any given ASM instance.
Here is an example of setting the database compatibility attribute:

ALTER DISKGROUP DG1 SET ATTRIBUTE 'compatible.rdbms'='11.1.0';

An example of how these attributes influence each other can be seen by looking
at the relationship between the disk_repair_time attribute and the compatible.asm
attribute. If you accept the default compatible.asm setting and try to set the
disk_repair_time attribute, you will get this error:

ORA-15032: not all alterations performed

ORA-15242: could not set attribute DISK_REPAIR_TIME

ORA-15283: ASM operation requires compatible.rdbms of 11.1.0.0.0 or higher

This message indicates that you need to set the compatible.asm attribute for the
disk group being configured. Set the compatible.asm attribute from the default of
11.0.0 to 11.1.0 as seen in the following example, and all will be well:

ALTER DISKGROUP DG1 SET ATTRIBUTE 'compatible.asm'='11.1.0';

So, the compatibility parameter not only controls which databases can connect to
your ASM disk groups; it also controls the features available in ASM (just like the
database compatibility parameter). You can see the compatibility settings for disk
groups using the V$ASM_ATTRIBUTE view.

One example of the interaction of the compatible.asm and compatible.rdbms
attributes might be a case where compatible.rdbms is set to a value of 10.2, and
compatible.asm to a value of 11.1. This will restrict the ASM disk group management
to versions of Oracle greater than 11.1, but the individual disk groups can manage
Oracle database instances with the compatible parameter set to 10.2 or greater.

ASM Preferred Mirror Read
Some ASM configurations involve remote mirroring to disks that are a fair distance
away (and may also involve remote instances). In these cases, the primary disk group
may not be the best set of disks for a given instance to read from. For example, you
might have two Real Application Clusters (RAC) instances on hardware 30 miles
apart. One set of disks might be stored with each RAC system. In this case, you want
the local RAC instance to be able to read from the closest ASM disk that is available
to ensure the best performance.

Chapter 2: Oracle Database New Management Features 37

ASM preferred mirror read is only available on RAC configurations, and generally
used only with clustered ASM instances. ASM preferred mirror read allows you to
read from a mirrored extent rather than the primary extent. To take advantage of this
feature, you should configure a mirrored extent copy that is local to each distant node
in the cluster. Use the new parameter, asm_preferred_read_failure_groups, to
configure the instance with a list of preferred disk failure group names to use when
accessing ASM disks. The format of the parameter is diskgroupname.failuregroupname
where diskgroupname is the name of the disk group that the failure group belongs to
and failuregroupname the name of the preferred failure group. You can include
multiple diskgroup/failgroup names by separating each preferred read group defined
with a comma as seen in this example:

Asm_preferred_read_failure_groups=dgroup1.fdisk2, dgroup2.fdisk2

If ASM cannot read from the preferred disk failure group, it will proceed to read
from the preferred group and then from any additional failure group that might be
defined. You can use the PREFERRED_READ column of the V$ASM_DISK view to
determine if a given disk in a disk group is a preferred read disk or not.

ASM Rolling Upgrades
Oracle Database 11g now supports rolling upgrades once you have upgraded to
Oracle Database 11g. Rolling upgrades from Oracle Database 10g to Oracle
Database 11g are not supported. As a part of this rolling upgrade feature, you can
upgrade ASM instances as a rolling upgrade. When attempting to perform rolling
upgrades, you must take care to ensure that dependent components are upgraded
first (for example, you must upgrade Cluster Ready Services [CRS] before you can
upgrade ASM).

Oracle has added new syntax to support rolling upgrades. You use the alter
system command along with the new start rolling migration parameter. Each
migration will require that a different set of parameters be provided along with the
alter system start rolling migration command including the version number, release
number, update number, port number, and the port update number. Consult the
upgrade documentation for the correct time and format of the command for your
upgrade.

When you issue the alter system start rolling migration command, ASM will
first try to determine whether any ASM rebalancing operations are occurring. If
rebalancing operations are occurring, then the command will fail. If no rebalancing
operations are occurring, then the operational characteristics of the ASM cluster will
change as follows:

 ■ You can only mount and dismount disk groups (no alter, create, or drop).

Database can open and close files in disk groups. ■

38 Oracle Database 11g New Features

Files can be resized or removed. ■

Access to views and fixed packages will be limited. Global views on a ■
clustered ASM instance will be disabled.

After altering the instance to start the migration, you will shut down and upgrade
each instance one at a time. Once the upgrade is complete you can restart the ASM
instance, and it will join the cluster. Once the upgrade is complete you end the
upgrade process using the alter system command:

Alter system stop rolling migration;

If during the upgrade you encounter problems, you can simply reverse the process
to roll back. One at a time shut down an ASM node, roll it back to the previous
software, and then restart it. Once the rollback is complete you can end the migration.
Note that once you end the migration you cannot roll back.

NOTE
As you might imagine, we strongly suggest that
you read the upgrade instructions before you do
any upgrade and make sure that you can use this
procedure for that upgrade.

ASM Support for Variable Allocation Unit Sizes
As mentioned in the earlier section “ASM Disk Group Attributes”, ASM now supports
variable extent sizes, which can reduce the memory requirement associated with
large ASM disk files, and thus improve performance. Now as file sizes increase
Oracle can allocate multiple extents of varying size. Since the maximum size of an
ASM file is dependent on the size of its extent, this means that your files can be larger
than the previous limit of 35TB for external redundancy disk groups.

You can also define disk groups such that the files created in them will be created
with a different AU size. AU sizes can vary from 1MB to up to 64MB in size. See the
earlier section “ASM Disk Group Attributes” for more on how to set the au attribute.
The ability to define different allocation units allows ASM disk groups with external
redundancy to have a maximum file size of 128TB, as opposed to 35TB in Oracle
Database 10g.

New SYSASM Role
Oracle has created a new role, SYSASM, that you should use when connecting as
an administrator to an ASM instance. You should start using SYSASM instead of
SYSDBA because, in the future, SYSDBA connections to an ASM instance will likely
not be supported. The authentication requirements for connecting as SYSASM are
the same as when you connect as SYSDBA.

Chapter 2: Oracle Database New Management Features 39

An example of connecting to an ASM instance using the new SYSASM role is
seen here:

[oracle@localhost ~]$ sqlplus / as sysasm
SQL*Plus: Release 11.1.0.3.0 - Beta on Sat Feb 24 19:48:10 2007
Copyright (c) 1982, 2006, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.3.0 – Beta
With the Partitioning, OLAP and Data Mining options
SQL>

You can also use the normal connect commands such as connect sys/robert as
SYSASM and the like.

Arup Says…
The support for variable extent sizes is perhaps the most important addition to
ASM in Oracle Database 11g. Prior to 11g, the number of extents, especially in
a large database, were simply too high, which made the extent maps too big to
be manageable in the shared pool and caused performance issues as well as the
dreaded ORA-4031 Unable to allocate x bytes in shared pool errors. To alleviate
the issue, Oracle Database 10g allowed an allocation unit to be defined in much
larger sizes through the use of an underscore parameter, as shown in the following
example:

_asm_ausize=16777216

This parameter, although an underscore one, is supported by Oracle and is
documented in MetaLink. The preceding line creates 16MB AUs. In large
databases over 10TB, that is a recommended size. The default value is 1048576,
or 1MB, even in Oracle Database 11g. But this one-size-fits-all fix was not a
solution in all cases. You could set the parameter if you knew well in advance
how big your database will grow, but in many cases you may not know that in
advance. In Oracle Database 11g, this problem is solved by decoupling the
extent size from the AU size. In 11g, one extent may span more than one AU and
the extent size grows as the database size grows, keeping the extent map under a
manageable limit that improves performance.

However, this also means that extents will become somewhat fragmented
on the disk over a period of time. This is usually negligible in many cases, even
if you drop and create database objects a lot. This will be a serious problem
only if you do a lot of data file creations and deletions. If you see performance
issues, you could defragment the disk by using the alter diskgroup … rebalance
operation.

40 Oracle Database 11g New Features

New asmcmd Commands
It’s funny how many people I’ve talked to who use ASM but have neither used nor
heard of asmcmd. Asmcmd was first released in Oracle Database 10g Release 2 to
make it easier to navigate ASM disks and their contents. Oracle Database 11g has
added additional features to asmcmd that we will cover in this section. These
features include the ability to back up and recover ASM metadata, the new lddsk
command, the repair command, and some new flag options for existing asmcmd
commands.

ASM Diskgroup Metadata Backup and Recover
Asmcmd comes with a new set of commands that allow you to back up and restore
the metadata associated with all your ASM disk groups. The md_backup command
will create a backup of all the ASM metadata, or a subset of ASM metadata, depending
on the parameters that you use. Here is an example of using the md_backup command
to back up the entire ASM metadata repository:

[oracle@localhost ~]$ asmcmd
ASMCMD> md_backup

Once this command has completed running, a file will be created in the current
working directory. On my Linux system this file was called ambr_backup_
intermediate_file, but this filename may well vary on different operating systems.
The backup file is pretty much text-based, so you can read through it. More
advanced use of the md_backup command allows you to control where the backup
file will be created, specify the disk groups that you want to back up, and to
override various options.

The md_restore command is used to restore disk group backups taken with the
md_backup command. You can restore from the backup without any changes, or
the md_backup command gives you numerous options to override settings too.
Here is an example of doing a metadata restore:

[oracle@localhost ~]$ asmcmd
ASMCMD> md_restore –b ambr_backup_intermediate_file

Both commands can be run as a parameter when you start asmcmd as in this
example:

[oracle@localhost ~]$ asmcmd md_backup

Also be aware that the md_backup command will not overwrite a previous
backup file. So you will need to move the file somewhere after the backup so the
next backup will be successful.

So, why would you use md_restore and md_backup? As with Oracle databases
there is a possibility that the ASM metadata stored in the ASM diskgroups could

Chapter 2: Oracle Database New Management Features 41

become corrupt (perhaps because of some in-memory OS corruption). While it is
(hopefully) a rare situation, it is in cases like these that your ASM metadata backups
could come in handy. I recommend that, if you are using ASM, a metadata backup
become one of your new daily backup operations.

Lsdsk Command
The lsdsk command lists the disks that are visible to ASM. Here is an example:

[oracle@localhost ~]$ asmcmd lsdsk
Path
/oracle/asmdata/asm_dgroup1_01.asm
/oracle/asmdata/asm_dgroup1_02.asm

Remap Command
The remap command can be used to repair a range of physical blocks on your ASM
disks. The command takes as parameters the disk group name, the disk name, and
the block range to remap. Note that while this command might make the disk
usable again (due to physically or logically corrupted blocks), it will not recover lost
or corrupted data for you. Here is an example:

[oracle@localhost ~]$ asmcmd remap dgroup1 disk_001 2000-4000

New Options for ls, lsct, and lsdg
The ls command has two new parameters, -c and -g. The -c parameter uses the
V$ASM_DISKGROUP view for the source of its output. If the -g parameter is used, then
GV$ASM_DISKGROUP will be used as the source of the output of the command.

Arup Says…
I can’t say enough about the usefulness (and timeliness) of the metadata
backup/restore functionality. In addition to the possibility of metadata
corruption as Robert mentions, there is also a possibility of someone running a
dd command to overwrite the contents of the disk header. This has actually
happened to me! The key thing to understand is that the header tells what is
located where on the disk. Overwriting the header removes that information,
but not the actual data itself. So, if you can reinstate the header, you may be
able to recover the data through the database. So, always run the md_backup
command and keep the output file in a safe location.

This md_restore command can also reinstate dropped disks, in some cases.
Another use of that is developing an automatic change control process
whenever you add, change, or drop disks.

42 Oracle Database 11g New Features

The lsct command also has a new -g parameter, which will cause it to select
from the GV$ASM_CLIENT view rather than the V$ASM_CLIENT view.

Finally the lsdg command also has added the -c and -g parameters. The
-c parameter uses the V$ASM_DISKGROUP view for the source of its output. If the
-g parameter is used, then GV$ASM_DISKGROUP will be used as the source of
the output of the command.

Automatic Memory Management
Oracle has made more changes to automated memory management features in Oracle
Database 11g. Oracle Automatic Memory Management can now automatically
manage both the system global area (SGA) and the program global area (PGA). This
additional functionality is controlled through the use of some new parameters,
memory_target and memory_max_target. Also related to this new functionality are
some changes to the advisors and some new views. We will discuss each of these
topics in the next sections.

Overview of Automatic Memory Management
Automatic memory management is added onto the existing Oracle Automated
Memory Management structure and also allows for the use of the various parameter
settings that can be used to configure minimum settings for the pools that the
parameters are associated with. Automatic Memory Management adds two new
memory parameters, memory_max_target and memory_target. You can see the
relationship of the various memory parameters in Figure 2-1.

There are two parameters that have been added to support Automatic Memory
Management, memory_ target and memory_max_target. Let’s look at these
parameters next.

The memory_target Parameter
The memory_target parameter is somewhat a combination of the sga_target
parameter value and the pga_aggregate_target parameter, representing the total
amount of memory that Oracle has to allocate between the various SGA and PGA
structures. The memory_target parameter is dynamic and can be changed up to and
including the value of memory_max_target, which we discuss next.

The memory_max_target Parameter
The memory_max_target parameter allows you to dynamically change the value
of the parameter memory_target within the confines of memory_max_target. Thus
you can adjust the total amount of memory available to the database as a whole at
any time.

Chapter 2: Oracle Database New Management Features 43

The memory_max_target parameter is set either manually or derived and defaults
to a value equal or greater than the value of the memory_target parameter. Oracle
will default memory_max_target to a value equal to memory_target if memory_max_
target is not set and memory_target is set. Oracle will set memory_max_target to a
value of 0 if memory_target is not set. If memory_target is not set but memory_max_
target is set to a non-zero value, then you can modify memory settings dynamically
by changing memory_target, or by changing the other specific memory parameter
settings. Figure 2-2 illustrates the auto memory parameter dependency.

NOTE
The memory_target and memory_max_target
parameters cannot be used when LOCK_SGA has
been set. Also memory_target and memory_max_
target cannot be used in conjunction with huge
pages on Linux.

When upgrading you may want to configure the memory_target parameter, or
you can choose to do it later. When you configure memory_target you should take
into consideration the current settings for the sga_target and pga_aggregate_target

FIGURE 2-1. Relationship of memory parameters

MEMORY_MAX_TARGET

MEMORY_TARGET

OthersSHARED_POOL_SIZE
DB_CACHE_SIZE

LARGE_POOL_SIZE
JAVA_POOL_SIZE

STREAMS_POOL_SIZE

DB_KEEP_CACHE_SIZE
DB_RECYCLE_CACHE_SIZE

DB_nK_CACHE_SIZE

SGA_MAX_SIZE

SGA_TARGET PGA_AGGREGATE_TARGET

LOG_BUFFER_SIZE
RESULT_CACHE_SIZE

44 Oracle Database 11g New Features

parameters. In most cases, you will want to sum up the sizes of sga_target and
pga_aggregate_target and set memory_target to this value. Then set sga_target
and pga_aggregate_target to zero values.

NOTE
Some platforms can give you grief about setting
memory_target. For example, on Linux you need
to make sure that /dev/shm (or its equivalent) is
allocated with an amount of space slightly larger
than what you wish to set the memory_target value
to. Failure to do this will result in the following error:

ORA-00845: MEMORY_TARGET not supported on this system

In determining how to size memory, you can still choose to leave the sga_target
and pga_aggregate_target parameters set to their current values. In doing so, you
indicate minimum amounts of memory that should be allocated to these structures.
In this case, Oracle can allocate more memory to either structure but will not be able
to reduce memory available to these structures below the setting of the associated

FIGURE 2-2. Auto memory parameter dependency

Auto Memory Parameter Dependency

MT>0

MMT>0

ST>0

MMT=0

ST>0 & PAT>0

ST>0 & PAT=0

ST>0 & PAT>0

MMT=MT

MT=0

Y

Y

N

N
N

N

N

Y Y

N

SGA and PGA cannot
grow and shrink automatically

MT can be
dynamically
changed later

MT=0

Only PGA
is auto tuned

SGA & PGA
are separately

auto tuned

Y

Y

Y

ST=60%MT
PAT=40%MT

ST=min (MT−PAT, SMS)

Both SGA and PGA can grow and shrink automatically

ST+PAT<=MT<=MMT

PAT=MT−ST

Minimum possible values

N

Chapter 2: Oracle Database New Management Features 45

parameter. This implies that if you convert to these new parameters during the
upgrade process, leaving sga_target and pga_aggregate_target set as configured, that
memory_target >= (sga_target + pga_aggregate_target). Failure to configure this
properly will keep the instance from starting due to an ORA-00838 error.

Something else to be aware of is that if you set memory_max_target and start
the instance, Oracle will grab an amount of free memory equivalent to the setting of
memory_max_target. This may vary by OS, but this is what we found in the Linux
and Windows OS environments. So be aware of the potential implications of setting
this parameter.

NOTE
Be careful when changing settings if you are
converting to automated memory management. You
will want to make sure that the sga_max_size and
sga_size are not set when converting to memory_
max_target and memory_target. Although setting
these parameters at the same time is supported, you
need to do so carefully so as to avoid unexpected
consequences.

New Memory Advisor Functionality and Views
Oracle has added a new view, V$MEMORY_TARGET_ADVICE, which provides
recommendations on how to set the memory_target parameter. Here is an example
query against this view:

SQL> select * from v$memory_target_advice order by memory_size_factor;

MEMORY_SIZE MEMORY_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR VERSION

----------- ------------------ ------------ ------------------- ----------

 176 .5 126 1.1443 0

 264 .75 110 1 0

 352 1 110 1 0

 440 1.25 110 1 0

 528 1.5 109 .99 0

 616 1.75 109 .99 0

 704 2 109 .99 0

In this example, we see that increasing memory on our database will have no
positive impact. The current memory_size setting is 352MB (if the SIZE_FACTOR is 1,
then this is the current size) which seems more than sufficient. Increasing it by 25
percent to 440MB (SIZE_FACTOR of 1.25) will only result in a minimal performance
increase as shown by the difference in the ESTD_DB_TIME column from 110 to
109. Note that this view will display no data until automated memory management
is enabled (setting the memory_target parameter at a minimum).

46 Oracle Database 11g New Features

NOTE
The data in these views is dependent on AWR
snapshots. If you have disabled AWR, or if you have
just created a database, you may see nothing when
you query these views. Also the result sets from
these views are going to be very dependent on load
and use of the system. The output will look very
different on an idle system compared to a very busy
and dynamic one.

Another view, V$MEMORY_DYNAMIC_COMPONENTS, provides a peek into
the various memory components of the database and how they are sized by Oracle’s
automated memory management facility. Here is an example of a query against this
view showing us the memory components currently configured. Note that in addition
to the normal memory pools, there are entries for SGA Target and PGA Target:

select component, current_size curr_size, min_size, max_size,
user_specified_size uss, granule_size gs from v$memory_dynamic_
components where current_size > 0;

COMPONENT CURR_SIZE MIN_SIZE MAX_SIZE USS GS
--------------- ---------- ---------- ---------- ---------- ----------
shared pool 67108864 62914560 67108864 0 4194304
large pool 4194304 0 4194304 0 4194304
java pool 4194304 4194304 4194304 0 4194304
SGA Target 218103808 218103808 218103808 0 4194304
DEFAULT buffer 134217728 134217728 138412032 83886080 4194304
cache
Shared IO Pool 8388608 8388608 8388608 8388608 4194304
PGA Target 150994944 150994944 150994944 0 4194304

How Is Oracle Managing My Memory?
You can monitor how Oracle is managing your memory by reviewing the
V$MEMORY_RESIZE_OPS view. This view contains a list of the last 800 SGA resize
requests handled by Oracle. Here is an example:

select parameter, initial_size, target_size, start_time
from v$memory_resize_ops
where initial_size > 0 and final_size > 0
order by parameter, start_time;

PARAMETER INITIAL_SIZE TARGET_SIZE START_TIME
-------------------- ------------ ----------- -------------------
db_cache_size 121634816 117440512 04/28/2007 19:33:45
db_cache_size 121634816 117440512 04/28/2007 19:33:45
db_cache_size 117440512 113246208 04/28/2007 19:33:45

Chapter 2: Oracle Database New Management Features 47

db_cache_size 113246208 109051904 04/28/2007 19:33:45
db_cache_size 109051904 104857600 04/28/2007 19:34:10
db_cache_size 104857600 100663296 04/28/2007 19:34:33
db_cache_size 100663296 96468992 04/28/2007 19:34:35
pga_aggregate_target 125829120 335544320 04/28/2007 19:39:20
shared_pool_size 58720256 62914560 04/28/2007 19:33:45
shared_pool_size 54525952 58720256 04/28/2007 19:33:45
shared_pool_size 62914560 67108864 04/28/2007 19:34:10
shared_pool_size 67108864 71303168 04/28/2007 19:34:33
shared_pool_size 71303168 75497472 04/28/2007 19:34:35

As you can see from this output, Oracle was busy making changes to the database
cache and the shared pool!

Automatic Memory Management and OEM
Oracle Enterprise Manager (OEM) fully supports automatic memory management.
From the OEM home page, you click on the Server tab at the top, and then proceed
to click on memory advisors. From this page you can enable or disable automatic
memory management, set the total and maximum memory size parameters, and
review the memory allocation history. Figure 2-3 is an example of the OEM Memory
Advisor page.

FIGURE 2-3. OEM Memory Advisor page

48 Oracle Database 11g New Features

Automatic Memory Management also has an interface into the memory advisor
function that you can use (it’s a graphic built off the V$MEMORY_TARGET_ADVICE
view) to determine how you should allocate memory to the instance.

Converting to Automatic Memory Management
You can manually convert to Automatic Memory Management or do so though
OEM. You can also configure a new database to use Automatic Memory
Management through the Database Configuration Assistant (DBCA). Those upgrading
to Oracle Database 11g might ask if it’s worth changing to Automatic Memory
Management. As with anything else new, I’d do so with caution, testing it out
carefully in your development environments. If you have an immediate need to
convert, then do so, but if you can wait, I would not put existing production systems
at risk. With regard to new databases built on the 11g stack, I will probably
configure them to use Automatic Memory Management and test them carefully.

ADDM New Features
Oracle Database 11g offers a number of new ADDM features. These new features
include:

 ■ New ADDM-related views

ADDM now RAC-aware ■

A new package called ■ dbms_addm that you can use to manage ADDM

Classifications ■

Directives ■

Let’s look at each of these new features next!

ADDM New Views
Oracle Database 11g has added new ADDM-related views as seen in the following
table:

Chapter 2: Oracle Database New Management Features 49

Note that each DBA_ view has a corresponding USER_ view except
DBA_ADDM_SYSTEM_DIRECTIVES.

ADDM Now RAC-Aware
There are several performance issues that are very RAC-specific. Prior to Oracle
Database 11g, the only way to analyze the cluster component of a RAC configuration
was through the use of a number of GV$ views. Oracle Database 11g has added a
new layer of analysis to ADDM called Database ADDM. With Database ADDM,
Oracle ADDM is now RAC-aware and will include a RAC cluster analysis as a part of
the overall ADDM database analysis process.

As with Instance ADDM, the new Database ADDM processes are run after each
AWR snapshot by default. Database ADDM can provide reporting on the following
conditions:

 ■ Excessive use of global resources such as IO and global locks

High-load SQL and resulting hot blocks ■

Global cache interconnect traffic ■

Network latency issues ■

Skewing in instance response times ■

View Name Description

DBA_ADDM_TASKS Provides a historical representation of previous
ADDM tasks

DBA_ADDM_INSTANCES Displays instance-level information for ADDM
tasks

DBA_ADDM_FINDINGS Provides additional information for the various
advisor views

DBA_ADDM_FDG_BREAKDOWN Provides information on the contribution of
the given finding for each instance

DBA_ADDM_SYSTEM_DIRECTIVES

DBA_ADDM_TASK_DIRECTIVES

50 Oracle Database 11g New Features

You enable Database ADDM by calling the set_default_task_parameter
attribute of the Oracle-supplied dbms_advisor PL/SQL package. Through this call
you can set the value of the instances parameters, which will indicate which
instances should receive Database ADDM analysis. The following table provides a
look at the different settings you can use for the instances parameter.

Here are some examples of setting this parameter:

-- Disable Database ADDM for all instances

Exec dbms_advisor.set_default_task_parameter('ADDM','INSTANCES','UNUSED');

-- Configure Database ADDM for instances 1 and 3 only

Exec dbms_advisor.set_default_task_parameter('ADDM','INSTANCES','1,3');

-- Configure Database ADDM for all instances

Exec dbms_advisor.set_default_task_parameter('ADDM','INSTANCES','ALL');

The results of this additional level of analysis will appear in several places in
OEM, such as the Cluster database home page in the performance analysis page.
From there you can drill down into other detail pages. Manual reporting is also
available with the new dbms_addm package, which we will discuss in the next
section.

Managing ADDM Through DBMS_ADDM
Oracle Database 11g introduces the dbms_addm package to assist the DBA in
administration of Oracle ADDM. This package provides the ability for the DBA to
direct that an ADDM analysis begin, to print a report, or to remove a previous
analysis.

Some of the more commonly used programs in dbms_addm and their purpose
are listed in the following table (we will discuss directives shortly, so they are not in
this list).

Instances Setting ADDM Analysis Mode Enabled

UNUSED Disables Database ADDM for all instances

Comma-separated list of
instances

Database ADDM will be done only for the instances
listed

ALL Enables ADDM for all instances

Chapter 2: Oracle Database New Management Features 51

Here is an example of using the dbms_addm package to execute a database-
wide ADDM analysis and report on the results:

-- Get the list of valid snapshots within the last 4 hours
select instance_number, snap_id
from wrm$_snapshot
where end_interval_time < systimestamp - interval '4' HOUR
order by 1,2;
INSTANCE_NUMBER SNAP_ID
--------------- ----------
 1 24
 2 23
 2 25
 2 26

Var tname varchar2(60);
BEGIN
 :tname:='ADDM Database Task';
 dbms_addm.analyze_db(:tname, 25, 26);
END;
/
set long 1000000
Spool /tmp/dbreport.rpt
SELECT dbms_addm.get_report(:tname) FROM dual;
spool off

The resulting report generally follows the same format of the standard ADDM
report (addmrpt.sql) that you can run on Oracle Database 10g. You could remove
the ADDM analysis later buy using dbms_addm.delete as seen in this example:

exec dbms_addm.delete('ADDM Database Task');

analyze_db Schedules a database-specific ADDM analysis, based on two
provided snapshot ranges

analyze_inst Schedules an instance-specific ADDM analysis based on two
provided snapshots

analyze_partial Schedules a partial database ADDM analysis based on two
provided snapshots and a listed set of instances

delete Deletes a specified ADDM task

get_report Provides the default ADDM report for the listed ADDM task

52 Oracle Database 11g New Features

Finding Classifications
The Oracle Advisor framework was introduced in Oracle Database 10g. ADDM is
one example of these advisors. In that framework we have symptoms, problems,
warnings, and informational types of findings. A finding name has been added to
the Advisor framework in Oracle Database 11g. The finding name provides additional
information that helps to classify the finding being given. For example, one finding
might be that CPU usage is too high, as seen in this example:

select task_name, finding_name,
type, impact_type from dba_advisor_findings
where rownum < 2;

TASK_NAME FINDING_NAME TYPE IMPACT_TYPE
-------------------- ------------ ----------- ------------------------------
ADDM:2209966315_1_3 CPU Usage PROBLEM Database time in microseconds.

The FINDING_NAME column is a new column in Oracle Database 11g that
classifies the finding into a specific classification, in this case CPU Usage. This
column is also added to the USER_ADVISOR_FINDINGS view.

This new classification of findings can be used to perform additional analysis as
in this case, where we try to see if the CPU usage problems seem to group around a
specific time (late morning seems popular here):

select to_char(execution_end, 'hh24') hour , count(*)
from dba_advisor_findings a, dba_advisor_tasks b
where finding_name='CPU Usage'
and a.task_id=b.task_id
group by to_char(execution_end, 'hh24')
order by 1;

HO COUNT(*)
-- ----------
04 1
05 1
07 1
11 3
12 3
13 2
15 1
16 2
17 1

There are about 80 different classifications of findings, which can be found in
the DBA_ADVISOR_FINDING_NAMES table.

Chapter 2: Oracle Database New Management Features 53

Directives
When running ADDM it might be desirable to direct the analysis to ignore certain
conditions. For example, if there is a ROBERT schema with well-known shortcomings
it would make sense to exclude ROBERT from an ADDM analysis. To exclude various
ADDM analysis and findings from appearing, you can set directives. These directives
can be assigned to a specific ADDM task, or can be set as a system directive.
Directives can be set via command line, or from within OEM. The following sections
discuss creation and removal, and provide example use of directives.

Creation of Directives
The procedures used to set directives are found in the following table:

Directive Type Procedure Name Description

Insert finding dbms_addm.
insert_finding_directive

Limits the ADDM report to
specific finding types (see
“Finding Classifications” earlier in
this section).

Insert parameter dbms_addm.
insert_parameter_directive

Creates a directive that prevents
ADDM from suggesting actions to
alter the value of a specific system
parameter (v$parameter).

Insert segment
directive

dbms_addm.
insert_segment_directive

Creates a directive that will
keep ADDM from suggesting
actions related to specific owner,
segment, subsegment, or a
specific object number.

Insert SQL
directive

dbms_addm.
insert_sql_directive

Creates a directive that will keep
ADDM from suggesting actions
based on specific SQL IDs. Further
filtering includes the ability to
limit the SQL to a minimum
number of active sessions, or
minimum response time in
microseconds.

54 Oracle Database 11g New Features

Removal of Directives
Dbms_addm provides procedures to remove directives as seen in the following
table:

Determining If Directives Are Defined
A new column, FILTERED, which can be found in a number of views, indicates if a
particular row in the view was filtered out by a directive. Views with the FILTERED
columns include:

 ■ DBA and USER_ADVISOR_FINDINGS

DBA and USER _ADVISOR_RECOMMENDATIONS ■

DBA and USER _ADVISOR_ACTIONS ■

Using Directives: Example
An example of the use of these directives might be a case where we do not want
ADDM to report on the ROBERT schema at any time. In this example we exclude
the ROBERT schema, and execute the report:

var tname VARCHAR2(60);
var inst_num number;
BEGIN
-- This will run on just the current instance.
select instance_number into :inst_num from v$instance;
-- Give the analysis a name.
:tname := 'mydb_instance_analysis';
-- Create the task.
DBMS_ADVISOR.CREATE_TASK('ADDM', :tname);
-- Snapshot to start the analysis
DBMS_ADVISOR.SET_TASK_PARAMETER(:tname, 'START_SNAPSHOT', 242);
-- Snapshot to end the analysis
DBMS_ADVISOR.SET_TASK_PARAMETER(:tname, 'END_SNAPSHOT', 243);
-- Set the instance for the task.
DBMS_ADVISOR.SET_TASK_PARAMETER(:tname, 'INSTANCE', :inst_num);
-- Set the directive.
DBMS_ADDM.INSERT_SEGMENT_DIRECTIVE(:tname, 'Segment directive ID', 'ROBERT');

Directive Type Removal Procedure Name

Delete finding dbms_addm.delete_finding_directive

Delete parameter dbms_addm.delete_parameter_directive

Delete segment directive dbms_addm.delete_segment_directive

Delete SQL directive dbms_addm.delete_sql_directive

Chapter 2: Oracle Database New Management Features 55

-- Fire the task.
DBMS_ADVISOR.EXECUTE_TASK(:tname);
END;
/
-- report on the task.
set long 1000000
SELECT dbms_addm.get_report('mydb_instance_analysis') FROM dual;
exec dbms_addm.delete_segment_directive(NULL,'Segment directive ID');
exec dbms_addm.delete('mydb_instance_analysis');

And, we can also produce the ADDM report and have it ignore the restriction
set by using the dbms_advisor.get_task_report procedure, as seen in this example:

SELECT DBMS_ADVISOR.GET_TASK_REPORT('mydb_instance_analysis', 'TEXT', 'ALL')
FROM DUAL;

AWR New Features
Oracle Database 11g has enhanced the Oracle Database Automated Workload
Repository (AWR), which was introduced in Oracle Database 10g. New features
make management of your database even easier. New and enhanced features
include:

 ■ Default retention of AWR snapshots changed

New AWR baseline features ■

Adaptive metric thresholds ■

Default Retention of AWR Snapshots Changed
By default, Oracle Database 11g will now retain eight days of AWR snapshot
information (as opposed to seven). As always you can override the default. This
value will only be set on new databases. Databases that are upgraded will keep the
AWR retention value already set for them.

AWR Baseline New Features
Oracle Database 11g consolidates the previous baseline features introduced in
Oracle Database 10g. The term applied to these consolidated features is the AWR
baseline. In addition to the various features available in Oracle Database 10g,
Oracle Database 11g has added new features that make AWR baselines even more
useful to the DBA. This includes:

 ■ New types of AWR baselines

Adaptive thresholds ■

56 Oracle Database 11g New Features

New Types of AWR Baselines
Oracle Database 11g offers some new twists on the AWR baseline. These include
the following:

 ■ Moving window baselines A moving baseline typically based on the
entirety of the statistical data contained in AWR

Single baseline ■ Allows you to define a baseline to be captured for a single
specified period of time in the future

Repeating baseline ■ Allows you to define a baseline to be captured for a
repeating period of time in the future

The next sections will discuss these new types of baselines. We will also discuss
AWR baseline templates, data dictionary views related to baseline templates, and
removal of baseline templates.

Moving Window Baselines
A new feature in Oracle Database 11g is the moving window baseline. The moving
window baseline is always called SYSTEM_MOVING_WINDOW, and you can see
details of this baseline in the WRM$_BASELINE view. The SYSTEM_MOVING_
WINDOW baseline start-and-stop window period will correspond to the time
between the earliest and latest snapshot available in Oracle Database 11g. As a
result the period of time that this baseline represents is controlled by the retention
setting for AWR, and it is constantly moving (hence the clever name, moving
window baselines).

The default moving window baseline window size can be adjusted from the
defaults via a call to dbms_workload_repository.modify_baseline_window_size as
seen in this example:

exec dbms_workload_repository.modify_baseline_window_size (-
 window_size => 30);

The value of window_size must be set to a value in days equal to or less than
the overall AWR retention setting or you will get an ORA-13541 error.

You can use the moving baseline with OEM to compare current statistics to
baseline statistics to assist you in determining how well your database is performing.
For example, the OEM performance page allows you to define the baseline to which
you wish to compare the statistics being reported. You can use the system moving
baseline, a manually defined baseline, or no baseline at all.

The moving window baseline implies that your baselines will continue to reflect
a current performance baseline of your system. The baseline data is kept fresh,
whereas manual baselines will become staler over time and will cease to reflect the

Chapter 2: Oracle Database New Management Features 57

accurate baseline state of your database. Having said that, it’s probably a good idea
to maintain some manual baselines for comparison purposes to ensure that your
database does not just slowly crawl into performance oblivion.

Single Baseline
Single baselines in some ways are much like baselines in Oracle Database 10g, in that
you can define a single baseline over an existing set of AWR snapshots. However,
single baselines also allow you to define a baseline for a future period of time. For
example, if you have special processing that happens on an irregular basis and you
know it will happen this weekend, you may want to create a single baseline to
schedule the generation of that baseline.

You can configure a single baseline from OEM. To do so, select the Server tab
from the OEM database home page. There under Statistics Management you will see
an option titled AWR Baselines. From this page you can create a single baseline.
OEM will have you define the start time and end time of the baseline, or the start-
and-stop AWR snapshot range.

If you create a single baseline based on previous AWR snapshots, no baseline
template is created. If you create a single baseline based on a future time period, a
baseline template will be created in order to schedule that baseline execution. Until
the baseline template is executed, it will now show up on the list of available AWR
baselines in OEM. You can also define an expiration date for a given baseline with
the expiration parameter. This expiration time is based on the end_time parameter
of the baseline that is created.

The dbms_workload_repository.create_baseline_template PL/SQL procedure
can be used to manually create single baselines, as seen in this example in which
we create a baseline for a future time (September 30th) and set it to expire 30 days
from the end_time of the baseline:

Alter session set nls_date_format='yyyy-mm-dd hh24:mi:ss';

BEGIN

 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (

 start_time => '2007-09-30 13:00:00',

 end_time => '2007-09-30 14:00:00',

 baseline_name => 'baseline_093007',

 template_name => 'template_093007', expiration => 30);

END;

/

You can review the results of all baseline executions from the OEM AWR
Baselines page by clicking on the baseline you are interested in. You can also use
various data dictionary views to review these baseline results, including DBA_HIST_
BASELINE and DBA_HIST_BASELINE_DETAILS, and you can also use the manual
reporting scripts awrddrpt.sql and awrddrpt.sql.

58 Oracle Database 11g New Features

Repeating Baselines
Repeating baselines can be defined to occur on a regular basis at a fixed time
interval. For example, if you have report processing that occurs every Saturday from
6 P.M. until 11 P.M., you may want to create a repeating baseline that runs during
that time period. This can be useful to track the overall efficiency of processing over
a longer period of time, or in troubleshooting important processing that is suddenly
suffering from performance problems.

You can configure a repeating baseline from OEM. To do so, select the Server
tab from the OEM Database home page. There under Statistics Management you
will see an option titled AWR Baselines. From this page you can create a repeating
baseline. OEM will have you define the start time and duration of the baseline, as
well as the frequency (daily, monthly, and so on). You will also need to enter a date/
time to expire the baseline (these repeating baselines do expire eventually). Finally
OEM gives you the ability to define how long the baseline should be retained. OEM
will then create the repeating baseline for you. After you create a repeating baseline,
Oracle will create a template that represents that baseline. See the next section for
more on baseline templates. As each moving baseline is generated, that execution
will appear on the AWR Baselines page in OEM.

The dbms_workload_repository.create_baseline_template PL/SQL procedure
can be used to manually create repeating baselines, as seen in this example where
we have a repeating baseline that executes every Sunday at 1 P.M. for three hours.
The baselines expire after 30 days, and will start on 5/31/2007, and the last baseline
will execute on the Sunday before or on 12/31/2007:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (
 day_of_week => 'sunday', hour_in_day => 13,
 duration => 3, expiration => 30,
 start_time => '2007-05-31 17:00:00',
 end_time => '2007-12-31 20:00:00',

Arup Says…
Repeating baselines are extremely useful in solving performance issues that are
tied to a specific time, or an interval. For instance, imagine a data warehouse
database where Extract, Transform, and Load (ETL) jobs run during the night
and reports run during the day. A repeating baseline that repeats every night at
certain intervals helps establish a pattern over a period of days. By examining
the AWR reports for each of these baselines, you can identify whether there is
a pattern to these performance problems, which comes in handy for resolving
the issue.

Chapter 2: Oracle Database New Management Features 59

 baseline_name_prefix => 'baseline_Sunday_reports _',
 template_name => 'template_Sunday_reports');
END;
/

AWR Baseline Templates
AWR baseline templates are created when you create a repeating baseline. It is this
template that will be used each time the scheduled baseline is executed. You can
view the template from OEM, which will show you various information on the
repeating baseline that has been created.

AWR Baseline Templates and the Data Dictionary
You can use the DBA_HIST_BASELINE_TEMPLATE data dictionary view to access
information on baseline templates. Here is an example of the use of this view:

SQL> select template_name, template_type from dba_hist_baseline_template;

TEMPLATE_NAME TEMPLATE_

------------------------------ ---------

robert_test_002 SINGLE

template_070526 SINGLE

template_Sunday_reports REPEATING

test_repeating REPEATING

Removing Baseline Templates
OEM provides an easy way to remove baseline templates. From the Server tab on
the OEM Database home page, simply select AWR Baselines. On the AWR
Baselines page there is a link to the AWR Baseline Templates page. From the AWR
Baseline Templates page you can view the status and configuration of existing
baseline templates, and you can choose to remove them.

Use the dbms_workload_repository.drop_baseline_template PL/SQL procedure
to remove existing baseline templates from the system as seen in this example:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE_TEMPLATE (
 template_name => 'template_Sunday_reports');
END;
/

Adaptive Metric Thresholds
Setting alerting thresholds in OEM can be hit and miss. Because metrics with regards
to performance can be hard to define, and can vary based on workload, baselines
can be used to define a set of metrics that reflect the system more accurately. This is
doubly hard if you have a new database, and no historical information on which to
base your thresholds. Adaptive metric thresholds in Oracle Database 11g allow you

60 Oracle Database 11g New Features

to move beyond that in that they will use AWR baselines to automatically set metric
thresholds for you. OEM also makes it easy to apply these adaptive metric thresholds,
with just a couple of clicks. The other benefit of adaptive metric thresholds is that as
your system workload changes, the alerting thresholds will evolve to reflect the
current state of the database.

Through OEM’s Baseline Metric Thresholds page (a link is available on the AWR
Baselines page already discussed in the previous section), you can allow Oracle to
perform a quick configuration of your thresholds. Based on the type of workload
your system will most often be doing (online transaction processing [OLTP],
Warehouse, or Alternating workloads), OEM will define your metric thresholds for
you. Once Oracle Database configures the initial thresholds, you can then choose
to edit them as required from the Basic Metric Thresholds page.

The thresholds that are generated automatically will adapt to the given workload
on the system as reflected in the baseline used to generate the metric. Thus, if you
have a heavier reporting workload in the evenings, with few online users, the metric
for average active sessions will likely be less in the evenings and higher in the
daytime. As the AWR moving baseline statistics change over time, any metric defined
as an adaptive metric may find its alerting threshold changed. You can determine if a
given metric is set as adaptive from the OEM Baseline Metric Thresholds page.

Scheduler AutoTask Automated
Maintenance Tasks
Oracle Database 10g introduced new automated maintenance tasks such as
automated statistics gathering. Oracle Database 11g adds a new component to the
Oracle infrastructure called AutoTask. The job of AutoTask is to provide a central
component that is responsible for management of scheduled maintenance tasks. In
the following sections we will look at the AutoTask architecture, dictionary views,
and managing AutoTask tasks with OEM and manually. Finally we will look at
AutoTask maintenance windows.

AutoTask Architecture
AutoTask builds on much of the existing architecture of Oracle Database 11g. The
AutoTask architecture consists of the following:

 ■ AutoTask Background Process This background process (ABP) is spawned
by MMON and is responsible for managing the AutoTask features. It
coordinates the AutoTask clients and the scheduler. It also maintains AutoTask-
related history, which can be seen in the DBA_AUTOTASK_TASK view.

Chapter 2: Oracle Database New Management Features 61

AutoTask clients ■ Automated maintenance tasks that are scheduled by
AutoTask. Oracle Database 11g includes clients for statistics gathering, the
Segment Advisor, and the Automatic SQL Tuning Advisor.

The AutoTask maintenance windows ■ Different maintenance windows
exist for different days of the week. These windows can be modified as
required.

Resource Manager ■ A resource plan is enabled that is designed to limit
the amount of resources that the AutoTask tasks can consume. This
resource plan can be modified as required (see the section titled “AutoTask
Resource Management”) for more on the new resource plan associated with
AutoTask).

OEM ■ OEM allows you to manage the start time and duration of the various
AutoTask maintenance windows and add or remove maintenance tasks. You
can also use OEM to enable or disable maintenance tasks.

The Scheduler ■ AutoTask operations rely heavily on the scheduler.
The AutoTask architecture uses scheduler windows and the scheduler
infrastructure to execute AutoTask tasks.

AutoTask Dictionary Views
New views have been created to support the AutoTask infrastructure. Oracle
Database 11g has removed the old jobs from the DBA_SCHEDULER_* views, and
moved them to DBA_AUTOTASK_* views (such as the SQL Tuning Advisor). The
following views have been added for AutoTask:

 ■ DBA_AUTOTASK_CLIENT This view lists the different clients that AutoTask
will run. You can use the DBA_AUTOTASK_CLIENT view to look at a great
deal of information including the names of the different AutoTask tasks that
will be run, the status of the tasks, the consumer group they are assigned
to, and how long the mean durations of the job are run. Other information
that the view provides is CPU consumption by the task over time, maximum
duration of the client, the name of the window group the client is assigned
to, and many other client-related attributes. Here is an example of the use of
the DBA_AUTOTASK_CLIENT view:

select client_name, status, consumer_group, mean_job_duration

from dba_autotask_client;

CLIENT_NAME STATUS CONSUMER_GROUP

MEAN_JOB_DURATION

--------------------------------- -------- ------------------------------

62 Oracle Database 11g New Features

auto optimizer stats collection ENABLED ORA$AUTOTASK_STATS_GROUP

+000000000 00:04:26.000000000

auto space advisor ENABLED ORA$AUTOTASK_SPACE_GROUP

+000000000 00:00:45.272727272

sql tuning advisor ENABLED ORA$AUTOTASK_SQL_GROUP

+000000000 00:05:53.000000000

NOTE
The documentation says the MEAN_JOB_DURATION
column is an average and not a true mean of the
duration of the job. The bottom line is that these views
are using average times, not mean times as the column
name suggests.

DBA_AUTOTASK_CLIENT_HISTORY ■ This view provides a historical
representation of the AutoTask client execution events per window. This
allows you to look at historical run information for each AutoTask client
based on the given window that the AutoTask executed in. Here is an
example of a query against the view to determine when the automated
statistics collection clients ran:

select client_name, window_name, jobs_created, jobs_started,

jobs_completed

from dba_autotask_client_history

where client_name like '%stats%';

CLIENT_NAME WINDOW_NAME JOBS JOBS JOBS

 CREATED STARTED COMPLETED

--------------------------- ---------------- ------- -------- ----------

auto optimizer stats collection THURSDAY_WINDOW 1 1 1

auto optimizer stats collection SUNDAY_WINDOW 3 3 3

auto optimizer stats collection MONDAY_WINDOW 1 1 1

auto optimizer stats collection SATURDAY_WINDOW 2 2 2

auto optimizer stats collection SUNDAY_WINDOW 4 4 4

auto optimizer stats collection TUESDAY_WINDOW 1 1 1

DBA_AUTOTASK_CLIENT_JOB ■ Provides information on AutoTask jobs
currently defined and executing. This view will typically be empty unless an
AutoTask job is running.

DBA_AUTOTASK_JOB_HISTORY ■ This view provides information on the
history of each AutoTask client execution.

select client_name, job_status, job_start_time, job_duration
from dba_autotask_job_history
where client_name like '%stats%'

Chapter 2: Oracle Database New Management Features 63

order by job_start_time;

CLIENT_NAME JOB_STATUS JOB_START_TIME
JOB_DURATION
------------------------------- ---------- -----------------------------------

auto optimizer stats collection SUCCEEDED 18-FEB-07 02.43.45.598298 PM -07:00
+000 00:00:24
auto optimizer stats collection SUCCEEDED 18-FEB-07 06.49.51.326230 PM -07:00
+000 00:02:21
auto optimizer stats collection SUCCEEDED 18-FEB-07 10.59.53.677261 PM -07:00
+000 00:00:55
auto optimizer stats collection SUCCEEDED 23-FEB-07 12.57.25.844519 AM -07:00
+000 00:12:49
auto optimizer stats collection SUCCEEDED 24-FEB-07 06.17.02.045879 PM -07:00
+000 00:13:09
auto optimizer stats collection SUCCEEDED 05-MAR-07 10.00.06.955011 PM -07:00
+000 00:04:32

DBA_AUTOTASK_OPERATION ■ This view provides information on the
attributes assigned to each AutoTask operation. For example, an AutoTask
client job may be marked as SAFE TO KILL if it can be interrupted in the
middle of its operation without negative effect. An example of this can be
seen in this output where the ATTRIBUTES column for the “auto optimizer
stats collection” job lists is marked as SAFE TO KILL:

select * from dba_autotask_operation

where client_name like '%stats%';

CLIENT_NAME OPERATION_NAME OPE PRIORIT

----------------------------------- ------------------------- --- -------

ATTRIBUTES USE_R STATUS

------------------------------------- ----- --------

auto optimizer stats collection auto optimizer stats job OPT INVALID

ON BY DEFAULT, VOLATILE, SAFE TO KILL FALSE ENABLED

DBA_AUTOTASK_SCHEDULE ■ Provides the start time and duration for
each AutoTask window.

DBA_AUTOTASK_TASK ■ This view provides information on each
individual AutoTask task. It provides a great deal of information from
statistics on the last run of the given task to estimated statistics for the next
run of the task.

select client_name, task_name, task_target_type
from dba_autotask_task;

CLIENT_NAME TASK_NAME TASK_TARGET_TYPE
------------------------------- ------------------------- ----------------

64 Oracle Database 11g New Features

auto optimizer stats collection gather_stats_prog System
auto space advisor auto_space_advisor_prog System
sql tuning advisor AUTO_SQL_TUNING_PROG SQL Workload

NOTE
Here is one place where we see AutoTask meet
the scheduler. Note the TASK_NAME column
in the DBA_AUTOTASK_TASK view. This relates
the AutoTask tasks to the programs stored in
the scheduler, which can be seen in the
DBA_SCHEDULER_PROGRAMS view as seen here:

select program_name
from dba_scheduler_programs
where program_name='GATHER_STATS_PROG';
PROGRAM_NAME

GATHER_STATS_PROG

DBA_AUTOTASK_WINDOW_CLIENTS ■ This view provides information
on the different windows associated with AutoTask Clients.

DBA_AUTOTASK_WINDOW_HISTORY ■ This view provides information
on the AutoTask windows.

Managing AutoTask Tasks via OEM
OEM provides an interface into AutoTask task management via the Scheduler Central
page. A link to Scheduler Central can be found at the bottom of the OEM home
page. From the scheduler home page you can see both automated maintenance tasks
running via AutoTask, regular scheduler jobs, or Enterprise Manager jobs. Figure 2-4
provides an example of the OEM Scheduler Central page, displaying Automated
Maintenance Tasks scheduled to be run.

You can see from the OEM page that the different kinds of available jobs are
listed at the top. Each of these is a hyperlink that takes you to a page that allows you
to further manage those types of jobs. For example, I can click on the Automated
Maintenance Tasks link and OEM will display the page seen in Figure 2-5, which
will allow me to manage automated maintenance tasks.

From the page in Figure 2-5 you can see if the tasks are executing within their
scheduled windows, or if they are exceeding the window times. Notice the three
options at the top under schedulers. These allow you to manage different kinds of
scheduled tasks. For example, if you wanted to manage an Automated Maintenance
Task, you would click on that link, finding yourself on the page shown in Figure 2-6.

Chapter 2: Oracle Database New Management Features 65

From the page in Figure 2-6, you can manage automated maintenance tasks by
clicking on the Configure button at the top of the page. Lower on the page you’ll
find specific automated maintenance tasks listed, and you can see the past and
future task execution schedule in a graphic format. You can click on some tasks for
detailed recommendations provided by the tasks as a part of the advisor framework.
For example, if we click on Segment Advisor on the page, we will find ourselves on
the Segment Advisor Recommendations OEM page.

We mentioned configuring automated maintenance tasks by clicking on the
Configure button as seen in Figure 2-6. OEM provides the ability to enable or disable
automated maintenance tasks either on a global level, or on a very granular level.
You can enable or disable specific tasks, and enable or disable specific scheduled
task executions. Some of the tasks have a Configure button that you can click on that
will allow you to further configure that specific task. Figure 2-7 provides an example
of the Automated Maintenance Tasks Configuration page of OEM.

Managing AutoTask Tasks Manually
In Oracle Database 10g you used the dbms_scheduler package to administer new
automated scheduler jobs such as the out-of-the-box collection of database statistics.
With the advent of AutoTask you will start using a new package to manage these jobs

FIGURE 2-4. OEM Scheduler Central and Automated Maintenance Tasks

66 Oracle Database 11g New Features

with the dbms_auto_task_admin package. OEM now uses this package to manage
these automated jobs too.

You will use the dbms_auto_task_admin.disable subprogram to disable any of
the AutoTask tasks. Note that there are no default values for any of the parameters,
so you will need to include them all in the call. In this example we will disable the
automatic collection of statistics:

BEGIN

dbms_auto_task_admin.disable(client_name => 'auto optimizer stats collection',

operation => NULL, window_name => NULL);

END;

/

The window_name parameter allows you to define a specific window that you
wish to disable (as opposed to the entire task). Out of the box there are seven windows,
one for each day of the week. These windows are called MONDAY_WINDOW,
TUESDAY_WINDOW, and so on. If I did not want the statistics collection to run on
Sunday (because, perhaps, I load new records into my data warehouse on Sundays),
I could disable the AutoTask execution for that day with this command:

FIGURE 2-5. OEM Scheduler Central showing Automated Maintenance Tasks

Chapter 2: Oracle Database New Management Features 67

BEGIN

dbms_auto_task_admin.disable(client_name => 'auto optimizer stats collection',

operation => NULL, window_name => 'SUNDAY_WINDOW');

END;

/

Conversely, to re-enable a given task you will use the dbms_auto_task_
admin.enable subprogram. Again, you must include all the default values as seen
in this example:

BEGIN

dbms_auto_task_admin.enable(client_name => 'auto optimizer stats collection',

operation => NULL, window_name => NULL);

END;

/

AutoTask Maintenance Windows
As mentioned earlier, AutoTask tasks are built to execute during AutoTask maintenance
windows. There are seven default windows, one for each day of the week. The
weekday windows (MONDAY_WINDOW, TUESDAY_WINDOW, and so on) have

FIGURE 2-6. OEM Automated Maintenance Tasks page

68 Oracle Database 11g New Features

a duration of four hours and start at 10 P.M. local time. The weekend windows have
a duration of 20 hours and are scheduled to start at 6 A.M. local time.

NOTE
The *_WINDOW windows replace the WEEKEND_
WINDOW and WEEKNIGHT_WINDOW windows
available in Oracle Database 10g. These windows
are still defined in Oracle Database 11g, however.

These windows are assigned to a resource plan, DEFAULT_MAINTENANCE_
PLAN, which is enabled automatically when the maintenance windows are opened.
The DEFAULT_MAINTENANCE_PLAN resource plan has a number of consumer
groups assigned to it and various associated tasks including:

 ■ ORA$AUTOTASK_SQL_GROUP Automatic SQL Tuning tasks are assigned
to this consumer group.

FIGURE 2-7. OEM Automated Maintenance Tasks Configuration page

Chapter 2: Oracle Database New Management Features 69

ORA$AUTOTASK_SPACE_GROUP ■ Segment Advisor tasks are assigned to
this group.

ORA$AUTOTASK_STATS_GROUP ■ Automatic statistics gathering is assigned
to this group.

Each of these groups control resource utilization of specific AutoTask
maintenance tasks (for example, allowable CPU load).

Parameter File Management
Changes and New Features

Oracle has made several changes with regard to how server parameter files
(or SPFILES) are managed. These include:

 ■ Read/write error handling of SPFILES

Easier conversion to the use of SPFILES ■

Users are prevented from setting invalid values in SPFILES ■

Let’s look at each of these changes in more detail.

Read/Write Error Handling of SPFILES
Oracle Database 11g is more protective of SPFILES. If a read/write error occurs while
reading from or writing to the SPFILE, Oracle will generate an error in the alert log,
and future writes to the parameter file will be ignored. In this situation you can opt to
shut down the database and restore the parameter file. You can also opt to create a
new parameter file using the new create spfile from memory option (discussed in the
next section). Finally, in the case of an error with the SPFILE, you can continue to run
the database.

Easier Conversion to the Use of SPFILES
Alas, there are those of you who have still not been converted to starting with an
SPFILE. Oracle has made it even easier for you to create and start using an SPFILE.
You can now use the new create spfile from memory command. This command
will take the in-memory settings and dump them out to an SPFILE for use. You can
also use this method to create a backup of your SPFILE using your current memory
settings should you desire to do so. This is a handy way to back up the SPFILE
before you start making changes to it with the alter system command.

70 Oracle Database 11g New Features

By default Oracle will create the SPFILE in a default location as defined by the
operating system (often ORACLE_HOME/dbs). You can also specify where to create
the SPFILE by defining the name and location of the SPFILE as seen in this example:

Create spfile='/oracle/util/spfilename.sp' from memory;

Users Are Prevented from Setting
Invalid Values in SPFILES
Oracle Database 11g has added additional error checking when you make changes
to database parameters. Now in many cases, when you change a parameter and are
using incorrect syntax, Oracle will advise you that you are using the wrong value.
Unfortunately, this does not seem to be a consistent thing in Oracle Database 11g,
but it’s a start. Here is an example:

SQL> alter system set control_management_pack_access = 'Wrong_Value'
scope=spfile;
alter system set control_management_pack_access = 'Wrong_Value' scope=spfile
*
ERROR at line 1:
ORA-00096: invalid value Wrong_Value for parameter
control_management_pack_access, must be from among DIAGNOSTIC+TUNING,
DIAGNOSTIC, NONE

Resource Manager Changes
and New Features
Oracle Database 11g has included a number of new features associated with the
resource manager. These new features include

 ■ The ability to measure the maximum IO throughput of the system
(IO calibration)

The default maintenance plan ■

Built-in resource plans ■

Resource Manager statistic histories stored in AWR ■

Resource Manager plan new directives ■

IO Calibration
The Oracle Database Resource Manager has a new procedure that allows you to
run IO calibration tests on your database and review the results of that test. When
run, the dbms_resource_manager.calibrate_IO procedure will generate a workload

Chapter 2: Oracle Database New Management Features 71

across all nodes of the cluster. The procedure takes two input parameters, and
returns three values as seen in the following tables:

NOTE
You must be using asynchronous IO in order to use
this feature.

Here is an example of the use of the dbms_resource_manager.calibrate_io
procedure:

Declare
 v_max_iops PLS_INTEGER:=1;
 v_max_mbps PLS_INTEGER:=1;
 v_actual_latency PLS_INTEGER:=1;

Input Parameter Type Meaning

num_physical_disks pls_integer This is the approximate number of physical
disks being used by the database. Default 1.

max_latency pls_integer Maximum latency in milliseconds allowed
for IO requests of size db_block_size.
Default 20.

Output Parameter Type Meaning

max_iops pls_integer Maximum number of randomly distributed
IO requests of db_block_size that can be
sustained by the system.

max_mbps pls_integer Maximum number of megabytes per second
that can be sustained by the system. Based
on randomly distributed, 1MB reads.

actual_latency pls_integer Average latency of db_block_size IO
requests at a rate of MAX_IOPS in ms.

72 Oracle Database 11g New Features

begin
 dbms_resource_manager.calibrate_io(
 max_iops=>v_max_iops,
 max_mbps=>v_max_mbps,
 actual_latency=>v_actual_latency);
 dbms_output.put_line('Results follow: ');
 dbms_output.put_line('Max IOPS: '||v_max_iops);
 dbms_output.put_line('Max MBPS: '||v_max_mbps);
 dbms_output.put_line('Actual Latency: '||v_actual_latency);
end;
/

We can view the status of a calibration exercise (current or historical) by querying
the V$IO_CALIBRATION_STATUS view, as seen in this example:

Select status from v$io_calibration_status;
STATUS

IN PROGRESS

We can review the results by using the DBA_RSRC_IO_CALIBRATE table as
seen in this example:

select * from dba_rsrc_io_calibrate;

STATUS LATENCY MAX_IOPS MAX_MBPS NUM_DISKS
------------- ---------- ---------- ---------- ----------
CALIBRATION_TIME

READY 19 77 6 1
27-MAY-07 09.50.15.421 PM

Default Maintenance Plan
As with previous versions of Oracle there is typically no resource manager plan
active by default. There is one exception to be aware of, and that is related to the
DEFAULT_MAINTENANCE_PLAN resource plan that we discussed earlier in this
chapter. When the scheduler maintenance window is opened, and if a plan is
associated with that window (as is the case during the maintenance window), then
the plan associated with that scheduler window will become active in the system.

If you do not wish the scheduler to define a resource plan, you can use the
dbms_scheduler.set_attribute procedure to set the resource_plan attribute to a
blank string, which will disable this feature. You would need to alter all the
maintenance windows defined in Oracle Database 11g to completely prevent the
DEFAULT_MAINTENANCE_PLAN plan from being set. Similarly, if you wish to
assign a different resource plan, you can use the same process to assign the changed
resource plan name to the given schedule.

Chapter 2: Oracle Database New Management Features 73

If you generally like the idea of the DEFAULT_MAINTENANCE_PLAN being
used by the scheduler, but there are times when you do not want the current
resource plan to be overridden, you can configure the resource_manager_plan
database parameter with a force attribute, which will prevent the plan from being
overwritten as seen in this example:

Alter system set resource_manager_plan='force:rf_plan' scope=both;

You can also use the dbms_resource_manager.switch_plan PL/SQL procedure
to pin a plan. To remove the force attribute, you issue the alter system command as
seen in the preceding example and simply remove the force attribute as seen here:

Alter system set resource_manager_plan='rf_plan' scope=both;

Built-In Resource Plans
Oracle Database 10g came with a built-in resource plan called SYSTEM_PLAN. The
SYSTEM_PLAN in and of itself was not a particularly useful resource plan. Oracle
Database 11g comes with a new plan, the MIXED-WORKLOAD PLAN which
provides resource management for a mixed environment consisting of OLTP and
DSS/batch jobs.

Arup Says…
IO calibration is nothing new in the information technology sector. There are
several other technologies that can provide IO calibration—from hardware
vendors as well as OS vendors. Even Oracle has a tool called Orion that
accomplishes part of it. So what extra functionality can this IO calibration tool
in 11g provide?

Plenty. First of all, all the other tools merely do a lot of IO to the disk and
develop a profile based on the actual transfer. Some tools may go an extra mile
or two by adding more granularity, more intelligence, and so on; but they are
all the same more or less. The IO calibration procedure in the package dbms_
resource_manager is unique in the sense that it executes the same routines the
Oracle Database makes, not some generic IO request. This makes the
calibration truly representative of the actual Oracle database calls, which
affects the performance significantly. So, conceivably, if there is a bug in the
Oracle kernel code in the IO area, the bug will affect the calibration as well,
and, that will be, well, highly desirable. The similarity in the output of the bug
will be desirable, not the bug itself, of course.

74 Oracle Database 11g New Features

Resource Manager Statistics in AWR
One of the nice features of AWR is that it provides a persistent repository for
historical statistical data. Since the V$ views are cleared when the database is shut
down, AWR becomes the best place for an accurate historical representation of the
performance of your database. To make it easer to track the effectiveness of the
Oracle Database Resource Manager, AWR now contains views that provide
historical information on Resource Manager performance. These new views are

 ■ DBA_HIST_RSRC_PLAN Contains the historical data from V$RESOURCE_
PLAN

DBA_HIST_RSRC_CONSUMER_GROUP ■ Contains historical data from
V$RESOURCE_CONSUMER_GROUP

Each of these views is associated with a given AWR snapshot and can be
materialized through OEM. Additionally Oracle Database 11g adds the
V$RSRCMGRMETRIC view, which contains historical metrics for Resource
Manager consumption of resources by the various consumer groups.

Resource Manager Plan Directive New Features
New attributes can be associated with Resource Manager plan directives in Oracle
Database 11g. The new parameters are

 ■ switch_io_megabytes This defines the amount of IO in megabytes that a
given session can consume before the directive action is taken. Defaults to
NULL (unlimited).

switch_io_reqs ■ This defines the number of IO requests that a given
session can execute before the directive action is taken. Defaults to NULL
(unlimited).

switch_for_call ■ This replaces the SWITCH_TIME_IN_CALL parameter,
which is deprecated in Oracle Database 11g. If this parameter is set to
TRUE, the consumer group will be restored to its original consumer group
at the end of the top call if the action is taken as a result of the switch_time,
switch_io_megabytes, or switch_io_reqs parameters.

mgmt_p1 to mgmt_p8 ■ These parameters replace the CPU_P1 to CPU_P8
parameters, which are deprecated in Oracle Database 11g. If the plan has
the CPU_MTH parameter set to EMPHASIS, this defines the CPU percentage
to allocate to the various levels (1 through 8). Only MGMT_P1 is applicable
if CPU_MTH is set to RATIO (which is typically used for simpler plans with

Chapter 2: Oracle Database New Management Features 75

only a single level of CPU allocation), in which case it defines the weight of
CPU usage.

Examples of the use of the new parameters can be seen here:

-- Create the resource plan
BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'OLTP',
 COMMENT => 'OLTP');
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'HIGH_IO_GROUP',
 COMMENT => 'OLTP');
END;
/
BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'EXCESSIVE_IO_GROUP',
 COMMENT => 'OLTP');
END;
/
BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'REPORTING',
 COMMENT => 'REPORTING');
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'DAYTIME',
 COMMENT => 'More resources for OLTP applications');
END;
/
BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OLTP',

76 Oracle Database 11g New Features

 COMMENT => 'OLTP group',
 MGMT_P1 => 75,
 SWITCH_GROUP => 'HIGH_IO_GROUP',
 SWITCH_IO_REQS => 100,
 SWITCH_IO_MEGABYTES => 250,
 SWITCH_FOR_CALL => TRUE);
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'REPORTING',
 COMMENT => 'Reporting group',
 MGMT_P1 => 15,
 PARALLEL_DEGREE_LIMIT_P1 => 8,
 ACTIVE_SESS_POOL_P1 => 4);

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'This one is required',
 MGMT_P1 => 10);
END;
/
BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'EXCESSIVE_IO_GROUP',
 COMMENT => 'High IO group',
 MGMT_P1 => 15,
 PARALLEL_DEGREE_LIMIT_P1 => 2);
END;
/

Finer-Grained Dependencies
Prior to Oracle Database 11g, changes to database objects could inadvertently
render a dependent object invalid when in fact the dependent object would not
need to be invalidated. For example, prior to Oracle Database 11g, if you add a
column to a table, this can result in the invalidation of a dependent view.

Oracle Database 11g now records dependency metadata at a greater level of
granularity, so that things like adding columns or removing columns to a table,
which do not impact a dependent object, will not cause that dependent object to go
invalid.

Chapter 2: Oracle Database New Management Features 77

DDL WAIT Option Now Default
In Oracle Database 10g, by default DDL commands would not wait if the object
was locked. Instead an error would be generated and the attempted change would
fail with an ORA-00054, indicating the resource was locked. Now, in Oracle
Database 11g, Oracle in many cases will not only not return an error, but will
execute the change without a wait being required. For example, you can now do
the following in Oracle Database 11g:

Session 1:
SQL>insert into test values (1);
1 row created.
Session 2:
SQL>alter table test add (id2 number);
Table altered.

Note in the preceding example that session 2 did not need to wait for session 1
to be committed. In fact, if you do a describe of the TEST table from session 1, even
before a commit, you will see the new column added, and you could insert a row
into that column.

Arup Says…
The DDL WAIT option is a really useful feature. How many times have you
tried to alter a table being used in production and were frustrated to find that
someone is using the table at that very instance? Your alter statement would fail
with something like ORA-00054: resource busy and acquire with nowait… All
you need is a miniscule time window to get an exclusive lock on the table and
make your changes. The DMLs on the table can continue afterwards. But, alas,
you couldn’t do it in 10g and earlier.

I had to resort to techniques like placing the DDL in a loop and executing it
several times hoping that it would get the lock sometime—a very crude
approach but the only feasible one. In Oracle 11g, you do not need to do
much. In the session you want to issue a DDL statement, issue this SQL first:

alter session set ddl_lock_timeout = 10;

This will make the subsequent DDL statements wait for 10 seconds before
timing out. Next, when you issue the DDL statement, and it can’t get the
exclusive lock due to DML activities in other sessions, this statement will not
fail with ORA-00054; rather it will hang (actually wait to get a lock). The
moment it acquires a lock, the statement succeeds. If the lock is not acquired
within the 10-second period, then the DDL statement fails with
ORA-00054 error.

This feature is extremely useful in busy systems for making DDL changes.

78 Oracle Database 11g New Features

You can also use the new ddl_lock_timeout parameter at the session level to
indicate that a DDL statement should wait for the DDL lock to be released. Here is
an example:

SQL> alter session set ddl_lock_timeout=30;
Session altered.

New Add Column Functionality
Oracle Database 11g now allows you to add a NOT NULL column with a default
value to a table in one, quick, easy operation. The default value is stored as metadata
in the database, and the default value is not actually physically stored in the table.
This makes the process of adding a column with a default value much faster.

Arup Says…
This is a great feature for availability. Prior to Oracle 11g, when you add a
column with not null constraint and with a default value, Oracle actually
populates the value in all the rows of the table. All the rows, ouch! Imagine a
multimillion-row table where the data will be updated several million times and
how much redo and undo it will generate. In addition, it will also lock the table
for the entire duration preventing DDLs. This caused a lot of consternation
among users.

In Oracle 11g, the statement alter table emp add (grade varchar2(1) default
‘X’ not null) does not actually update the table at the same time this DDL is run.
You can check this by setting the event 10046 before running the DDL and
checking the trace file afterwards:

SQL> alter session set events '10046 trace name context forever,
level 16';
Session altered.
SQL> alter table emp add (grade varchar2(1) default 'X' not null);
Table altered.
SQL> alter session set events '10046 trace name context off';
Session altered.

Now check the trace file; you will not see a reference to the update emp …
statement. This behavior results in significantly less redo and undo, and also
completes faster.

Another great use of this feature is while adding a NOT NULL column to a
table without a default value.

Chapter 2: Oracle Database New Management Features 79

End of Line
We have covered a lot in this chapter. Clearly, Oracle Database 11g is full of neat stuff,
and I think some of the handiest features are the simplest ones like the DDL WAIT
option (certainly it lacks the complexity of some of the other features!) or the new add
column functionality. Hard-core users of ASM will find that new functionality helpful
too. I think Arup has done a bang-up job in this chapter too, so all hail Arup! All in all,
a load of information and we are not done yet. Chapter 3 is hot on the heels of this
chapter and it’s even more fun, if you can believe that! Hang on tight, it’s going to be
an exciting ride!

This page intentionally left blank

CHAPTER
3

Oracle Database
New Availability and

Recovery Features

81

82 Oracle Database 11g New Features

racle Database 11g has a number of new features in it that simplify
database backup and recovery. These features include:

 Fault diagnosability infrastructure ■

RMAN ■

Flashback database ■

High availability ■

Let’s look at these new features now in more detail.

Fault Diagnosability Infrastructure
Oracle Database 11g introduced a new feature called the fault diagnosability
infrastructure. This infrastructure is designed to assist in preventing, detecting,
diagnosing, and resolving problems such as database bugs and various forms of
corruption. This new infrastructure changes some things such as where the alert log
is generated, and adds a great deal of new functionality to Oracle Database. In the
next several sections we will cover the new fault diagnosability infrastructure
components:

 The Automatic Diagnostic Repository (ADR) ■

The alert log ■

Trace, dump, and core files ■

The Support Workbench ■

ADR Command Interpreter (ADRCI) command-line utility ■

Other ADR contents ■

The Automatic Diagnostic Repository (ADR)
The ADR is the repository for the files associated with the fault diagnosability
infrastructure. The files are stored on the host operating system, which has a
standard directory structure. Each instance stores data in its own ADR home. The
ADR provides for standardization of the location for files that Oracle is required to
support. This standardized file structure also makes it easy for Oracle to package
these files, a feature we will discuss shortly.

O

Chapter 3: Oracle Database New Availability and Recovery Features 83

The new diagnostic_dest parameter defines the root of the ADR and deprecates
the user_dump_dest, core_dump_dest, and background_dump_dest parameters that
you are probably familiar with. As a result, if you create a new Oracle Database 11g
database with the DBCA, you will not find the alert log or user trace files where you
would have previously expected them. By default the diagnostic_dest parameter is
set to $ORACLE_BASE. If $ORACLE_BASE is not set, then it is set to the value of
$ORACLE_HOME. The root directory of the ADR directory structure starts with a
directory called diag, under which is a subdirectory that references the product
type. For example, for the database the product is called rdbms. Under rdbms is a
directory for each database, and then a directory for each individual instance.

For example, if $ORACLE_BASE is /u01/oracle and the database name is mydb,
database instance is mydb1, then the structure of the ADR directory for that
database will be /u01/oracle/diag/rdbms/mydb/mydb1. This directory structure is
called the ADR home, and each instance has its own ADR home. If you are using
RAC, you can used shared storage for ADR, or individual storage on each node. We
would recommend shared storage in an RAC environment since you can see the
aggregate diagnostic data from any node. Also a shared ADR allows for more robust
recovery options for the data recovery advisor.

Under this directory structure will be a number of other directories. Some of the
most common directories include the following:

 ■ Alert This is the location of the XML-formatted alert log. See the next
section titled “The Alert Log” for more information (it’s not your father’s
alert log!).

Cdump ■ This is the location of the core dumps for the database.

Trace ■ This contains trace files generated by the system, as well as a text
copy of the alert log.

Incident ■ This directory contains multiple subdirectories, one for each
incident.

In Figure 3-1 we see a diagram of the ADR base structure.
A new view, V$DIAG_INFO, provides information on the various ADR locations,

as well as information related to ADR, such as active incidents. Here is an example
of a query against the V$DIAG_INFO view:

SQL> select * from v$diag_info;
 INST_ID NAME VALUE
---------- ------------------------- --
 1 Diag Enabled TRUE
 1 ADR Base C:\ORACLE\PRODUCT
 1 ADR Home C:\ORACLE\PRODUCT\diag\rdbms\rob11gr4\ro
 b11gr4

84 Oracle Database 11g New Features

 1 Diag Trace C:\ORACLE\PRODUCT\diag\rdbms\rob11gr4\ro
 b11gr4\trace
 1 Diag Alert C:\ORACLE\PRODUCT\diag\rdbms\rob11gr4\ro
 b11gr4\alert
 1 Diag Incident C:\ORACLE\PRODUCT\diag\rdbms\rob11gr4\ro
 b11gr4\incident
 1 Diag Cdump C:\ORACLE\PRODUCT\diag\rdbms\rob11gr4\ro
 b11gr4\cdump
 1 Health Monitor C:\ORACLE\PRODUCT\diag\rdbms\rob11gr4\ro
 b11gr4\hm
 1 Default Trace File C:\ORACLE\PRODUCT\diag\rdbms\rob11gr4\ro
 b11gr4\trace\rob11gr4_ora_7832.trc
 1 Active Problem Count 1
 1 Active Incident Count 1
11 rows selected.

We will discuss problems and incidents in more detail later in this section.

The Alert Log
In Oracle Database 11g the alert log is now stored in two formats in the ADR. The
first is the old text format, and the second is a copy that is formatted with XML tags.
This allows tools to process the alert log more efficiently and gather more detailed
information. The alert log is stored in the ADR directory called alert. If you wish to

ADR Base

ADR Home

Alert cdump Incident Trace (Others)

SID

Database Name

rdbms

diag

FIGURE 3-1. The ADR base structure

Chapter 3: Oracle Database New Availability and Recovery Features 85

look at the old text copy of the alert log you will find it in the ADR directory called
cdump.

OEM provides a way to look at the alert log with the XML tags stripped out of it.
You can also use the new ADR Command Interpreter (adrci) command-line utility to
strip out the XML tags from the alert log. Adrci has some interesting features. For
example, you can view the alert log using the tail option, as shown in the following
example. This will allow you to watch the alert log as records are generated, much
like using the UNIX tail command:

C:\oracle\product\11gBetaR4\db_01\NETWORK\ADMIN>adrci
ADRCI: Release 11.1.0.4.0 - Beta on Sat Jun 2 01:09:30 2007
Copyright (c) 1982, 2006, Oracle. All rights reserved.

ADR base = "C:\oracle\product"
adrci>>show alert -tail
ADR Home = C:\oracle\product\diag\rdbms\rob11gr4\rob11gr4:

2007-06-02 00:42:47.398000 -06:00
Logminer Bld: Lockdown Complete. DB_TXN_SCN is
UnwindToSCN (LockdownSCN) is 1832443
2007-06-02 00:42:48.929000 -06:00
db_recovery_file_dest_size of 2048 MB is 83.44% used. This is a
user-specified limit on the amount of space that will be used by this
database for recovery-related files, and does not reflect the amount of
space available in the underlying filesystem or ASM diskgroup.
2007-06-02 00:43:45.586000 -06:00
SYS_AUTO_SQL_TUNING_TASK created SQL Profile named
"SYS_SQLPROF_0144bacb369c0000" for sql_id g0jvz8csyrtcf
during execution "EXEC_1_7".
2007-06-02 00:45:20.916000 -06:00
SYS_AUTO_SQL_TUNING_TASK created SQL Profile named "SYS_SQLPROF_0144bacb94b60001" for
sql_id d89c1mh5pvbkz during execution "EXEC_1_7".
2007-06-02 00:55:09.970000 -06:00
Thread 1 advanced to log sequence 91
Current log# 1 seq# 91 mem# 0: C:\ORACLE\ORADATA\ROB11GR4\ROB11GR4\REDO01.LOG

We will discuss other functionality of the adrci command-line utility throughout this
chapter.

Trace, Dump, and Core Files
Trace files, dump files, and core files are now all stored in the ADR. Because these
files are often associated with a database incident (such as an Oracle code bug),
having them all stored in a consistent directory structure makes it easier for Oracle
to package these files for support purposes.

The Support Workbench
One of the main purposes of the ADR is to support the new Oracle Database 11g
feature, the Support Workbench. The Support Workbench provides the ability to
investigate errors and report them to Oracle. In some cases the Support Workbench

86 Oracle Database 11g New Features

Arup Says...
The absence of the alert log file, at least the way it is accessed, may pose some
interesting problems. For instance, consider the case where there are two
Oracle SIDs on the host running from the same Oracle Home. Here two alert
logs are produced. Since the SIDs are on the same Oracle Home, you have to
call the adrci command from the same source, that is, $OH/bin. When you
issue show alert, which alert log will be shown? And, more important, how can
you ask for a specific alert log to be shown? In case of multiple Oracle SIDs,
you will get the following error:

adrci> show alert -tail
DIA-48449: Tail alert can only apply to single ADR home

The answer to the issue lies in another command in adrci—set homepath.
While you’re at the adrci command prompt, issue the following command to
see all the homes (ADR homes, not Oracle Homes) that adrci can access:

adrci> show homes
ADR Homes:
diag/rdbms/probe2/PROBE2
diag/rdbms/probe1/PROBE1
diag/asm/+asm/+ASM11
diag/tnslsnr/prolin2/listener

Here you can see the homes adrci can access. To see the alert log of the
SID PROBE2, you will point adrci to that home:

adrci> set homepath diag/rdbms/probe2/PROBE2

Now, when you issue show alert, the alert log of the PROBE2 instance is
shown.

To confirm this, or to find out later which home is set, use the following
command:

adrci> show homes
ADR Homes:
diag/rdbms/probe2/PROBE2

You can change the home at any time by issuing the set homepath
command.

But as you can see, it can become tedious after a while. You almost always
tail the alert log of a specific SID, and you would want that to be the default.

Chapter 3: Oracle Database New Availability and Recovery Features 87

can even correct errors, suggesting the use of advisors designed to correct specific
problems. The Support Workbench is a shortcut to opening a service request (SR)
with Oracle, providing a streamlined method of opening the SR and collecting the
information that Oracle Support will request to service the SR.

The Support Workbench is supported by many different interfaces. Typically
one would use Oracle Enterprise Manager, but the adrci command-line utility is
available, as are PL/SQL packages dbms_hm and dbms_sqldiag. In the next few
sections we will discuss using the Support Workbench to correct Oracle Database
errors.

The principal way to access the Support Workbench is through OEM. The
Support Workbench has its own OEM page. To access it, select Software and
Support from the OEM Database home page as seen in Figure 3-2.

Using the Support Workbench—Workflow
Usually the use of the Support Workbench is a result of an Oracle error, though
sometimes it might be in response to an alert in OEM. There are several steps that
need to be followed when using Support Workbench to deal with an incident, as
seen in Figure 3-3. We cover these steps in more detail in the next few sections.

Step 1: View Critical Alerts and Errors Step 1, viewing critical alerts and errors,
should already be something that you do as a DBA. You probably have had
experience with Oracle errors such as the ORA-600 and reviewing alerts from OEM.

To save typing the set homepath command every time, you can use an ADRCI
script, a small text file with contents as shown in the following example:

set homepath diag/rdbms/probe2/PROBE2
show alert -tail –f

Name this file adrci.cmd. Now you can call this script directly as

$ adrci –script=adrci.cmd

It will execute the commands inside the file, much like a Unix shell script.
In addition to the alert log, the listener log is also in XML now, so you will

not find a file called listener.log under $OH/network/log any more. The file will
be called $ORACLE_BASE/diag/tnslsnr/prolin2/listener/alert/log.xml. You can
examine the file using the ADRCI utility as well.

adrci> set homepath diag/tnslsnr/prolin2/listener
adrci > show alert –tail -s

88 Oracle Database 11g New Features

The Support Workbench augments your monitoring by automatically detecting
many errors that might occur in your database and creating problem records for
those errors. Within the context of the Support Workbench, each error type is
typically a problem. A given problem can have many occurrences (for example. the
same ORA-0600 can occur many times). Each occurrence is called an incident. A
given problem, then, may have one or more incidents associated with it. The
Support Workbench Page provides a summary of each problem, and allows you to
drill down into the different incidents. Figure 3-4 provides a screen print of the OEM
Support Workbench Page.

Step 2: Review the Details Step 2 is equally something that a DBA should be used
to dealing with, the details of given errors. Step 3 involves gathering additional
information on the error from OEM or perhaps doing some research on the error.
Upon reviewing the details, you may well discover a solution to the error.

FIGURE 3-2. OEM Database Home page

Chapter 3: Oracle Database New Availability and Recovery Features 89

Step 3: Collect Additional Information: Health Checks If you have not found a
solution to the error in Step 2, then Step 3 involves collecting additional diagnostic
information. This may include running database health checks with the new Oracle
health checks. The health checks analyze the database looking for various types of
corruption, and then generate a report of any findings. Along with the generated
report there may be recommendations on how to solve the problem. There are a
number of different health checks available to run. These are listed in the following
table.

FIGURE 3-3. Steps to use Oracle Database Support Workbench

Task

View Critical
Error Alerts in

Enterprise
Manager

1

Task

Close Incidents

7

Task

Track the Service
Request and

Implement Any
Repairs

6

Task

Package and Upload
Diagnostic Data to

Oracle Support

5 Task

Create a Service
Request

4

Task

Gather Additional
Diagnostic
Information

3

Task

View Problem Details

2

ORA–00600

90 Oracle Database 11g New Features

All Control Files Check Data Block Integrity Check Logical Block Check

All Datafiles Check Dictionary Integrity Check Redo Integrity Check

Archived Log Check Failure Simulation Check Redo Revalidation Check

Block IO Revalidation
Check

HM Test Check
IO Revalidation Check

Single Datafile Check
Transaction Integrity Check

CF Member Check Log Group Check Txn Revalidation Check

DB Structure Integrity
Check

Log Group Member
Check

Undo Segment Integrity
Check

FIGURE 3-4. OEM Support Workbench page

Chapter 3: Oracle Database New Availability and Recovery Features 91

These different health checks can be boiled down into the following categories:

 Database Structure Integrity Check ■ Verifies the integrity of database files,
reporting on those that are inaccessible, corrupt, or inconsistent. When the
database is mounted or open, then log files and data files listed in the control
file are checked. When the database is in NOMOUNT mode, then only the
control file integrity is checked.

Data Block Integrity Check ■ Verifies that the disk image blocks are not
corrupted. Checks include checksum failures, head/tail mismatch, and other
logical inconsistencies. Many of the errors reported by this health check
can be repaired using the Data Recovery Advisor. You can also view the
V$DATABASE_BLOCK_CORRUPTION view to view information on data
block corruption.

Redo Integrity Check ■ Verifies the contents of the online redo log, ensuring
accessibility and that corruption does not appear. Any archived redo logs
will also be checked.

Undo Segment Integrity Check ■ Verifies that logical undo corruption
does not exist. If corruption exists, the health check will try to use Process
Monitor (PMON) and System Monitor (SMON) to recover the corrupted
transaction. If the Health Monitor cannot correct the problem, then information
on the corruption will be stored in V$CORRUPT_XID_LIST for review.

Transaction Integrity Check ■ Almost identical to the Undo Segment
Integrity Check, this check examines undo corruption for specific
transactions.

Dictionary Integrity Check ■ Verifies that core dictionary objects are not
subject to corruption.

A health check can be run in one of two modes. The first is reactive mode.
In this mode, Oracle runs the health check automatically when a critical error
occurs. The second mode is manual mode. In manual mode the DBA manually
runs the health check using the dbms_hm PL/SQL package or you can choose to
use the OEM interface. The results of the database health checks are stored in
the ADR.

All of the health checks can be run with the database online or mounted.
Some health checks can be run when the instance is available (NOMOUNT
mode), including the Redo Integrity Check and the Database Structure Integrity
Check.

92 Oracle Database 11g New Features

To run the health check manually, you will want to first query the V$HM_
CHECK view to determine the name of the health check. Then simply call dbms_
hm.run_check to execute the health check as seen here:

BEGIN
 dbms_hm.run_check('Dictionary Integrity Check', 'my_run');
END;
/

We can see the results of the run by first finding the RUN_ID from the V$HM_RUN
data dictionary view and then using the dbms_hm.get_run_report PL/SQL procedure
as seen in this example:

select run_id, name from v$hm_run;
 RUN_ID NAME
---------- -----------------------------
 1 HM_RUN_1
 21 my_run

SET LONG 100000
SET LONGCHUNKSIZE 1000
SET PAGESIZE 1000
SET LINESIZE 512
DBMS_HM.GET_RUN_REPORT('MY_RUN')
--
SELECT DBMS_HM.GET_RUN_REPORT('my_run') FROM DUAL;
Basic Run Information
 Run Name : my_run
 Run Id : 101
 Check Name : Dictionary Integrity Check
 Mode : MANUAL
 Status : COMPLETED
 Start Time : 2007-09-16 08:00:39.883334 -06:00
 End Time : 2007-09-16 08:01:55.022851 -06:00
 Error Encountered : 0
 Source Incident Id : 0
 Number of Incidents Created : 0

Input Paramters for the Run
 TABLE_NAME=ALL_CORE_TABLES
 CHECK_MASK=ALL

Run Findings And Recommendations
 Finding
 Finding Name : Dictionary Inconsistency
 Finding ID : 102
 Type : FAILURE
 Status : OPEN
 Priority : CRITICAL
 Message : SQL dictionary health check: dependency$.dobj# fk 126 on
 object DEPENDENCY$ failed
 Message : Damaged rowid is AAAABnAABAAAOiHABI - description: No further
 damage description available
 Finding

Chapter 3: Oracle Database New Availability and Recovery Features 93

 Finding Name : Dictionary Inconsistency
 Finding ID : 105
 Type : FAILURE
 Status : OPEN
 Priority : CRITICAL
 Message : SQL dictionary health check: dependency$.dobj# fk 126 on
 object DEPENDENCY$ failed
 Message : Damaged rowid is AAAABnAABAAAQXqAA6 - description: No further
 damage description available

More and more DBAs are using OEM now, and Oracle allows you to run health
checks (also called Checkers) from OEM, and check the results. To do so, click on
the Advisor Central page link found at the bottom of the OEM Database home
page. From there you will see a link titled Checkers near the top of the page. From
there you will see a number of checkers, which represent the different kinds of
database health checks you can run. Figure 3-5 provides an example of the OEM
Advisor Central Checkers page.

Simply click on the checker you want to run, enter the requested parameter/
option values, and run the checker. After the checker runs, you will be returned to

FIGURE 3-5. Oracle OEM Advisor Central Checkers page

94 Oracle Database 11g New Features

the Checkers page. From the Checkers page you can review the results of the Health
Monitor check you executed. Figure 3-6 shows an example of an error that was
discovered in my data dictionary when I ran a health check.

You can see from the OEM output that there is a problem with an object in my
data dictionary. OEM offers me the ability to run the new Recovery Advisor in this
case, which we will discuss later in this chapter.

Finally you can view the health check reports from the new adrci utility as seen
in this example:

C:\>adrci
adrci> show homes
ADR Homes:
diag/tnslsnr/localhost/listener
diag/tnslsnr/localhost/listener_102
diag/clients/user_oracle/host_61728193_11
diag/clients/user_unknown/host_411310321_11
diag/asm/+asm/+ASM
diag/rdbms/orcl/orcl
diag/rdbms/robupg/robupg

FIGURE 3-6. Oracle OEM error found during data dictionary health check

Chapter 3: Oracle Database New Availability and Recovery Features 95

diag/rdbms/dbua0/DBUA0
adrci> set homepath diag/rdbms/orcl/orcl
adrci>>show report hm_run my_run
<?xml version="1.0" encoding="US-ASCII"?>
<HM-REPORT REPORT_ID="my_run">
 <TITLE>HM Report: my_run</TITLE>
 <RUN_INFO>
 <CHECK_NAME>Database Dictionary Check</CHECK_NAME>
 <RUN_ID>21</RUN_ID>
 <RUN_NAME>my_run</RUN_NAME>
 <RUN_MODE>MANUAL</RUN_MODE>
 <RUN_STATUS>COMPLETED</RUN_STATUS>
 <RUN_ERROR_NUM>0</RUN_ERROR_NUM>
 <SOURCE_INCIDENT_ID>0</SOURCE_INCIDENT_ID>
 <NUM_INCIDENTS_CREATED>0</NUM_INCIDENTS_CREATED>
 <RUN_START_TIME>2007-06-02 11:18:05.672000 -06:00</RUN_START_TIME>
 <RUN_END_TIME>2007-06-02 11:18:16.062000 -06:00</RUN_END_TIME>
 </RUN_INFO>

You can also opt to review the report in your browser as seen in this example:

adrci>>set browser explorer
adrci>>show report hm_run my_run

Another way to view the reports from the health checks is to use the data
dictionary views that Oracle provides. These views include the ones shown in the
following table:

Here are some examples of using these views. First, we can collect information
on health checks that have been executed:

select run_id, name, check_name, status from v$hm_run;
 RUN_ID NAME CHECK_NAME STATUS
---------- ---------- -------------------------------- ----------
 1 HM_RUN_1 Database Cross Check COMPLETED
 21 my_run Database Dictionary Check COMPLETED
 41 Robert-OEM Database Dictionary Check COMPLETED

View Name Purpose

V$HM_RUN Provides information on the various health
check runs

V$HM_FINDING Provides findings of the health check runs

V$HM_RECOMMENDATION Provides recommendations from the health
check runs

96 Oracle Database 11g New Features

Now, let’s look at the findings and recommendations:

select a.run_id, a.name, a.description desc_finding,
b.description desc_repair, b.repair_script
from v$hm_finding a, v$hm_recommendation b
where a.run_id=b.run_id (+);

 RUN_ID NAME DESC_FINDING DESC_REPAI REPAIR_SCR
------- ---------- ------------------------------ ---------- ----------
 41 Dictionary SQL dictionary health check: d
 Inconsist ependency$.dobj# fk 126 on obj
 ency ect DEPENDENCY$ failed

Again we see my pesky data dictionary error.

Step 4: Create a Service Request for a User-Reported Problem
(If Applicable) This step only applies if OEM does not display a problem, and you
wish to track a problem that you are aware of and planning on requesting support
for. If OEM displays the problem you are concerned with then proceed to step 5 to
package the problem. After this step is complete, you will proceed to step 5 to
package your user reported problem.

From the Support Workbench home page, you will find a link to create a user-
reported problem. From the Create User-Reported Problem page, you will find a
number of different issues that you can create a problem ticket for, including a
generic “None of the Above” option that allows you to open a problem for just
about anything. Many of these issues have advisors that you may want to run first.

If the advisors do not help, or if you are creating a problem that does not have
an advisor available to help, you will then need to add details to allow OEM to
track the problem. To enter these details, from the Create User-Reported Problem
page, select the button that indicates that you wish to continue with the creation of
the problem. An example of the Create User-Reported Problem OEM page can be
seen in Figure 3-7.

Having determined that you want to continue with the creation of the problem,
OEM will present the problem details page. From the problem details page, you will
manually enter problem-related information.

The Problem Details page offers a number of options. If offers links to go to
MetaLink, run the checkers, and then package the problem up for Oracle Support
(more about packaging problems later in this chapter). Figure 3-8 provides a display
of the Problem Details Page from OEM.

Step 5: Oracle OEM Package and Upload Diagnostic Data to Oracle
Support OEM provides the ability to package the incident files associated with
this problem. Packaging the problem will pull together the various files that Oracle
will require to diagnose the problem at hand (one hopes). You can then submit the

Chapter 3: Oracle Database New Availability and Recovery Features 97

package to Oracle. At that time an SR can be opened, or you can associate a
package with an SR that has already been opened.

Packaging can be done in various ways. For example, we could create a package
for our user generated incident created earlier in step 4 (using the quick package
option you saw available in Figure 3-7). We can also create a package for a given
problem from the Support Workbench page on OEM that you saw in Figure 3-7).
In this case we would select the problem, and then click on the Package button to
package the problem up.

So, what is a problem package anyway? A problem package is a logical structure
stored in the ADR that points to the diagnostic files that will be required by Oracle
to effectively support a given Oracle SR. Files in a given problem package may
include trace files, dump files, alert logs and so on.

NOTE
Problem packages are also sometimes called
incident packages.

FIGURE 3-7. Oracle OEM Create User-Reported Problem page

98 Oracle Database 11g New Features

Problem packages can be customized. The DBA can add other files to the
package or choose to remove files from the package. You can also edit the files in
the package to remove any data that might be sensitive.

To package a problem and submit it to Oracle click on the problem and then on
the package link. Oracle will give us an option to do quick packaging or custom
packaging. Generally quick packaging will be sufficient, so we will select that.
Oracle then provides a wizard that walks us through the packaging effort. Within
this wizard we will enter a number of details such as:

 Package description ■

SR number with Oracle if you already have one ■

Whether you want to actually send the package to Oracle ■

The wizard will allow you to preview the contents of the package before it gets
shipped off to Oracle support. Additionally you can opt to send the upload
immediately or later if you prefer.

FIGURE 3-8. Oracle OEM Problem Details page

Chapter 3: Oracle Database New Availability and Recovery Features 99

You can also manually upload the incident package to Oracle by following the
instructions that OEM will provide. You will find the new package to send in the incpkg
directory in the $ORACLE_BASE/diag/rdbms/<dbname>/<instanceName>/incpkg/pkg_
directory, where ## is a sequence number that makes each package/incident unique.
The location of the package is also available from OEM in the Package Details Page.

NOTE
To successfully upload the problem package,
you will need to have properly setup Oracle
Configuration Manager.

Step 6: Track the Service Request and Implement Any Repairs This is largely
a manual process that simply means to keep up with the SR that you have created,
and to add any new incidents to the package you have sent to Oracle. Additionally
you may want to continue researching the problem through other sources, such as
Google. As you discover information on the problem, or Oracle provides feedback,
you can record comments that will be associated with the problem in the activity
log of the problem via OEM.

Step 7: Close the Incident Once the incident has been resolved, you will want to
close it from the OEM Support Workbench. To close an incident, go to the Problem
Details page for the problem. Then from that page, select each incident that you
wish to close and click on the Close button. OEM will close the incident at that
time. Note that all incidents are automatically purged after 30 days. You can disable
purging of a specific incident, from the Incident Detail page in OEM.

RMAN New Features
RMAN offers a number of new features in Oracle Database 11g. These features include:

 Interfile backup parallelism ■

Faster backup compression ■

Better security ■

Active database duplication ■

Improved handling of long-term backups ■

Backup failover for archived redo logs ■

Archived redo log deletion policy enhancements ■

Recovery catalog enhancements ■

100 Oracle Database 11g New Features

Undo backup optimization ■

Block media performance improvements ■

Block change support for standby databases ■

Improved RMAN scripting ■

Backup of read-only transportable tablespaces ■

NOTE
See Chapter 4 for more information on the Data
Recovery Advisor (DRA), which is closely associated
with RMAN. DRA is a new advisor that takes
advantage of the fault Diagnosability infrastructure.

Interfile Backup Parallelism
When the bigfile tablespace first came out, the one question everyone asked is, how
are you going to back up a multi-terabyte database data file in serial? We should
have known that Oracle would address this problem, and they do in Oracle
Database 11g. Now RMAN can parallelize interfile backups. Parallel interfile
backups are known as multisection backups. With multisection backups Oracle will
allocate a channel for each section of the file to be backed up.

To enable multisection backups, you specify the section size parameter within
RMAN. RMAN will divide the files being backed up into file sections, which are just
logically divided, contiguous blocks in a file. RMAN will create a backup set with
one backupset piece for each file section. Here is an example of backing up a
bigfile tablespace called USER_DATA, chunking the backup into 300MB chunks.
Each 300MB chunk would be represented by a single backupset piece. If we
parallelized the backup into different channels, each channel would create a
separate backupset piece, in parallel:

backup section size 300m tablespace user_data;

One limitation here, as I see it, is that you cannot indicate that you want to skip
backing up a certain data file in a given backup. Thus if you issue the command
backup database section size 300m, then each data file of the database that is larger
than 300 megabytes will be chunked up. This can potentially slow down your
backups (there is somewhat more overhead in multisection backups than normal
backups). So, we recommend that your section size be large enough that you don’t
inadvertently end up sectioning data files you don’t really need to section.

Chapter 3: Oracle Database New Availability and Recovery Features 101

TIP
Be careful not to section the backup of a large data
file on a single disk or a small number of disks. The
high cost to get the file due to disk head movements
will most likely outweigh the potential benefits of
this sectioned backup.

Arup Says…
This is a great technique to parallelize backups on many spindles at the backup
location. Typically most sites employ something similar to this backup
strategy—first do an RMAN backup to a disk area; and then use a backup tool
such as NetBackup, NetWorker, Tivoli and others, or even plain simple “tar” to
move these backups from disk to the tape. Some of these tools work more
efficiently if they get the data from the disk on many spindles, or at least on
multiple filesystems or directories. This can be easily achieved now using the
sectioning feature of RMAN. Suppose you have two filesystems, loc1 and loc2,
and you want to spread the backup of tablespace SYSTEM over these two
directories. You can write a query such as this:

RMAN> run {
2> allocate channel c1 type disk format '/loc1/%U';
3> allocate channel c2 type disk format '/loc2/%U';
4> backup
5> section size 300m
6> tablespace system;
7> }

After this is completed, you can check the existence of the backup of the
data file 1, that is, that of the SYSTEM tablespace.

RMAN> list backup of datafile 1;

... some more output ...

 List of Backup Pieces for backup set 6 Copy #1
 BP Key Pc# Status Piece Name
 ------- --- ----------- ----------
 10 1 AVAILABLE /loc1/0eim19pd_1_1
 12 2 AVAILABLE /loc2/0eim19pd_2_1
 11 3 AVAILABLE /loc1/0eim19pd_3_1

Note how the backup was spread over the filesystems /loc1 and /loc2, in a
round-robin fashion; so, even if the pieces were more than two, the distribution
will be somewhat equal. Also note the column Pc#, which shows the Piece.

102 Oracle Database 11g New Features

Faster Backup Compression
I think the addition of BZIP2 compression to RMAN in Oracle Database 10g was
one of the best ideas that Oracle has ever had for that product. I love demonstrating
in RMAN classes that I give how compression not only significantly reduces the size
of your backup sets, but also can seriously speed up your backups (assuming you
have sufficient CPU). Oracle Database has added a new compression option to the
RMAN toolkit that you can use.

Oracle Database 11g introduces support for the ZLIB compression algorithm.
The upside to ZLIB is that it is a faster zip algorithm than BZIP2. The downside is
that ZLIB compression does not produce as compact an image as BZIP2, so your
backup images will generally be larger. So it’s speed versus space, the timeless
conflict.

ZLIB compression is the default in Oracle Database 11g. You can use the RMAN
configure command to define which type of compression you wish to utilize as
seen in these examples:

CONFIGURE COMPRESSION ALGORITHM 'ZLIB';
CONFIGURE COMPRESSION ALGORITHM 'BZIP2';

NOTE
This is an Oracle Database 11g upgrade issue,
because the default compression method changes.
You may find your backups taking more space after
upgrading, because the ZLIB compression algorithm
is suddenly being used. Unless your backups are just
killing the CPU, I recommend that you configure
RMAN to use BZIP2 after you upgrade.

Active Database Duplication
Prior to Oracle Database 11g if you were going to duplicate a database to another
system via RMAN, you had to have either temporary storage location on that remote
system for the backupset pieces or you had to have a shared network drive.
Additionally you had to have a current backup in place in order to duplicate a
database. With Oracle Database 11g you don’t even need a current backup to
duplicate your database, and you don’t need to worry about having to move copies
of your backups or shared drives! What makes this possible is a new feature called
active database duplication (the old method, called backup-based duplication, is
still available of course).

Active database duplication can occur on both the local box and over the
network. Let’s look at an example of using active database duplication over the
network to duplicate our Oracle database. In this example, we will assume you

Chapter 3: Oracle Database New Availability and Recovery Features 103

want to use the same directory structure, so we first prepare the auxiliary database
instance on a remote host. We then proceed to duplicate the source database to the
auxiliary database on the remote host.

NOTE
Active database duplication can also be used to
create standby databases.

Prepare the Auxiliary Instance on the Remote Host
First, we need to create the auxiliary instance on the remote host to which we wish
to duplicate our database. We assume you have already installed Oracle Database
11g, so the remaining steps are

 1. Create the Oracle Database directory structures.

 2. Create the password file for the auxiliary instance.

 3. Configure networking for the auxiliary instance.

 4. Create the parameter file for the auxiliary instance.

 5. Start the auxiliary instance.

Let’s look at each of these steps in some more detail as we execute them.

Create the Oracle Database Directory Structures Before we can duplicate the
database we will need to create the directory structures that the duplicated database
will be using. These include the directories for the data files and others as required.
We assume you have already installed the Oracle database software and are
generally familiar with duplicating a database using RMAN.

Create the Password File for the Auxiliary Instance Active database
duplication requires that the auxiliary instance have a password file. This is because
the source database will be connecting directly to the auxiliary database, requiring
a password file. One other key is that you want to use the same SYSDBA password
as the source database. You will also see, later in this example, that we use the
password file option of the duplicate command. This will cause the duplication
process to move the password file from the source to the target database during the
duplication process. In this example, we create the password file for our remote
database called REMOTE:

Cd %ORACLE_HOME%\database
Orapwd file=pwdremote.ora password=Robert

104 Oracle Database 11g New Features

Configure Networking for the Auxiliary Instance Duplication of databases
requires that RMAN be able to connect to the auxiliary database instance via Oracle
Networking. Because of this we will need to use the Oracle Network Configuration
Assistant to configure networking to the auxiliary database instance. This is a typical
DBA operation that you should already be familiar with. After configuring
networking, ensure that you can connect to the auxiliary instance from the host
system that you will be duplicating from.

NOTE
You will have to hard-code the instance information
into the listener.ora file to be able to facilitate
the connection between the target and auxiliary
database.

Create the Parameter File for the Auxiliary Instance There are different
strategies for the creation of the parameter file when duplicating databases. In our
example we will use the SPFILE technique, which only requires that we create an
SPFILE for the auxiliary database with the database name set to some arbitrary value.
During the duplicate process (and during an active database duplication), RMAN
will create the SPFILE for the database being duplicated from a copy of the SPFILE
for the source database. Parameters of the duplicate allow you to manipulate
destination directories for the auxiliary/target database if this is required. In our
temporary parameter file the db_name value is set to dupdb for the purposes of
database duplication.

NOTE
Other methods for creating the auxiliary parameter
file exist (and they have not changed since Oracle
Database 10g). Review the documentation if you
need to use one of these alternative methods.

Start the Auxiliary Instance Having configured the auxiliary instance, we now
nomount it in preparation for the duplication operation with RMAN. Simply log in
to the database from SQL*Plus and issue the startup nomount command.

NOTE
Some OSes might require other steps (for example,
you might need to create the Oracle service for
the instance with oradim). Please reference your
platform-specific guide for instructions specific to
your Operating System and platform.

Chapter 3: Oracle Database New Availability and Recovery Features 105

Duplication over the Network
In this example, we assume RMAN is already configured with default channels
(which have been a feature since Oracle 9i). To execute the duplication we need to
start RMAN, connecting to the target database and the auxiliary database (we have
chosen not to use a recovery catalog in this example):

Rman target=/ auxiliary=sys/Robert@mogo_destdb

Once successfully connected, we issue the duplicate command, and grab a cold
cola from the machine down the hall as our database is effortlessly duplicated
across the network. Note that we didn’t need to have any current backups to
perform this duplication, so the target database could be brand new and never
backed up before. Here is our duplicate command:

DUPLICATE TARGET DATABASE TO auxdb FROM ACTIVE DATABASE
SPFILE NOFILENAMECHECK;

Note the use of the from active database clause, which is new in Oracle
Database 11g. This parameter tells RMAN that you want this to be an active
database duplication (obviously!). The spfile parameter indicates that you want to
copy the SPFILE from the target database to the duplicated database for its use after
the duplication process.

NOTE
As I wrote this section, I did several active database
duplications. One thing I noticed is that the method
used to transport the data across the network did
not seem to take full advantage of the bandwidth
available. This seemed also to be true with regard
to available CPU bandwidth and disk bandwidth.
For example, I never saw my network bandwidth
usage grow above 25 percent, and I never saw
CPU usage grow beyond about 40 percent. Disk IO
response was perhaps the worst, but it was far from
overburdened. The point is that this would appear
to be a slightly slower method of duplicating a
database as opposed to a solution where you have
made database backups available via some file-
system-sharing protocol (for example, NFS).
I also tested adding database load during the active
database duplication and saw little performance
impact on a two-CPU box.

106 Oracle Database 11g New Features

End of the Line
After the duplication is complete, the newly duplicated database is renamed. If you
are running Oracle on Windows, RMAN will also create a new service for you. The
database can then be accessed. One final note is that RMAN does shut down the
auxiliary instance but does not remove it. This makes it easy to do subsequent
database duplications.

Improved Handling of Long-Term Backups
Oracle Database 11g has changed some things with regard to archival backups
(those using the keep option to override RMAN retention settings). The logs and
nologs options of the backup command have now become obsolete. Instead, when
you perform a backup with the keep option, Oracle will back up all database
components required to ensure that a consistent version of the database can be
restored:

 1. The database backup is executed. This backup will include data files, the
control file (regardless of autobackup settings), and the current SPFILE.

 2. An archived redo log backup is executed.

 3. Control file and server parameter files are backed up.

Note that each backup created with the keep option is assigned a unique tag
that can be referenced during restore operations (I would recommend you assign it a
tag with a naming convention that makes sense to you, instead).

The keep option also supports the creation of a restore point during the backup.
This makes it easier to restore the archived backup. This is a normal restore point,
but if you are using a recovery catalog this restore point will be retained for the
lifetime of the backup. The keep option is also available (without the restore point
option) when using the change command to modify existing backups.

Finally, be aware that an archived backup can be aged out of the control file if
they are to be maintained for more than a year. It is recommended that if you wish
to keep archived backups that you use a recovery catalog to prevent this from
happening. In fact a recovery catalog is required when using the keep forever
option. The keep forever option indicates the backup should be kept until it is
deliberately removed by the DBA.

NOTE
Of course, with offline backups, the database is
already in a consistent state. No archive log backups
are required for such a backup when using the keep
option.

Chapter 3: Oracle Database New Availability and Recovery Features 107

Backup Failover for Archived Redo Logs
Sometimes databases are actually archiving to multiple archive log destinations.
There may be times when an archived redo log is not in a particular destination
directory, or perhaps it is corrupt for some reason. Now in cases where RMAN
cannot back up an archived redo log in the flash recovery area, RMAN will fail
over to any other archived redo log destination directory and attempt to back up
the archived redo log from that location. For example, if Oracle is archiving to the
flash recovery area and another archived redo log destination directory is a
Network Attached Storage (NAS) drive, if an archived redo log backup fails in the
flash recovery area, RMAN will attempt to back up the archived redo log from the
NAS location.

Archived Redo Log Deletion Policy Enhancements
In Oracle Database 11g, the archive log deletion policy configuration settings now
apply to all archived redo log destinations instead of just the flash recovery area.
While automatic deletion of archived redo logs will only occur in the flash recovery
area (FRA) as a matter of nominal FRA space management operations, other
archived redo logs will be made subject to the retention policy, and marked as
OBSOLETE. As such, commands such as delete obsolete will now impact archived
redo logs in all locations, removing them as required.

Also in Oracle Database 11g with the all option of the to applied on [all] standby
command, you can define the deletion policy as applying to all mandatory and
optional remote archive log destinations. Using the all option means that archived
redo logs on the primary database will not be marked for deletion until they are
consumed by all remote archived redo log destinations, mandatory or not.

You can also define a retention policy for archived redo logs that have been
backed up a predefined number of times. Use the archivelog deletion policy
parameter of the configure command with the to backed up n times to device type
command to indicate that archived redo logs should be removed after they have
been backed up n times on the same device. Note that any logs must have been
shipped to any required standby database locations before this command will be
successful.

Recovery Catalog Enhancements
Two new recovery catalog enhancements are found in Oracle Database 11g. These
are the virtual private catalog, which is used to improve security, and the import
catalog command, which is used to merge one recovery catalog into another. Let’s
look at each of these new features in a bit more detail.

108 Oracle Database 11g New Features

Better Catalog Security
In previous versions the owner of the catalog had compete access to the recovery
catalog. It was an onerous task to grant access to the recovery catalog to other users,
and even more difficult if you wanted to limit the ability of those users to see only
specific data.

Oracle Database 11g now offers the virtual private catalog to make management of
recovery catalog security easier. Now, the owner of the base recovery catalog can
grant limited access (by database) to the recovery catalog views to other users. This is
done though the new RMAN grant command (after some initial setup), which is used
to grant privileges to a specific user and then to create the virtual catalog for that
user. When granted privileges, the user can query the recovery catalog views of the
databases to which they have been granted privileges. They can also store and execute
local stored scripts; however, they will have read-only access to global stored scripts.

Import Catalog Command
There may be cases where you have more than one recovery catalog and you wish
to merge these disparate catalogs into one catalog. Oracle Database 11g makes this
easy with the import catalog command. You can also move an existing recovery
catalog between two databases using the import catalog command. All database
RMAN backup metadata will be imported into the destination catalog schema by
default; however, you can opt to define a list of databases that you want to import
instead. Once the import is complete, the database will be unregistered from the
source catalog schema by default (you can override this setting if you wish).

In the event that you are using global scripts in your recovery catalog, the
import catalog command may run into a naming conflict if another global script is
present in the destination catalog schema. In this case, RMAN will rename the
global script.

Catalog imports are subject to RMAN compatibility restrictions with regard to
the version of the recovery catalog schema, the RMAN executable, and the recovery
catalog database. Check the Oracle documentation if you have any questions with
regard to compatibility. You do not need to connect to the target database to import
the catalog schema data, but you do need to connect to the destination catalog
schema.

Here is an example of importing the recovery catalog. Here the source catalog
service name is db_src and the destination catalog schema service name is db_dest:

 [oracle@rac1 ~]$rman catalog=mycat/pass@db_dest
RMAN> import catalog oldcat/pass@db_src db_name=my_db, your_db

NOTE
If the import fails, the entire operation will be rolled
back.

Chapter 3: Oracle Database New Availability and Recovery Features 109

Undo Backup Optimization
A recovery does not require all undo capability available in the UNDO tablespace. For
example, if a transaction has been committed, then the associated undo is not required.
In an effort to reduce even further the time required to back up an Oracle database,
Oracle will not backup unneeded UNDO if backup optimization is set to ON.

Block Media Recovery Performance Improved
Oracle Database 10g introduced block media recovery, which allows you to restore
specific corrupt blocks online, rather than the entire data file. This was a revolutionary
step forward for Oracle. Oracle Database 11g enhances this feature by providing
the ability to recover these blocks from the flashback logs (if flashback is enabled).
This new feature can significantly reduce the time that it takes to perform block
media recovery since RMAN will not have to restore backups from tape or disk. If
RMAN cannot find the blocks in the flashback logs, it will then use RMAN backups
(full or level-0 incremental) along with archived redo logs to recover the block.

Other RMAN New Features
Oracle Database 11g comes with a number of new RMAN related features (you just
knew a book from me would have some RMAN related stuff in it, didn’t you!).
These new features include:

 Block change support for standby databases ■

Improved scripting ■

Backup of read-only transportable tablespaces ■

Block Change Support for Standby Databases
Support for the block change tracking file is now available on physical standby
databases when performing incremental backups. This will make backups of
standby databases potentially faster than with previous Oracle versions.

Improved RMAN Scripting
Oracle Database 11g allows you to use substitution variables in your RMAN
command files and stored scripts. The new using parameter of the RMAN command
allows you to define the values associated with substitution variables contained
within the stored script. To define the substitution variable, use the ampersand
character followed by a number. For example, the following backup command uses
two substitution variables &1 and &2:

Backup database tag '&1' keep until time 'sysdate+365' restore point
'&2' plus archivelog;

110 Oracle Database 11g New Features

RMAN would them prompt us for the appropriate values to assign to &1 and &2.
To execute this from a shell or batch script, we would call it as seen here:

Rman target=rman/pass @'/rman/script/myscript.rman' using $tag $rest_point

Or from the RMAN command line you could do this:

RMAN>@/rman/script/myscript.rman ROBERT RESTORE_AB

Backup of Read-Only Transportable Tablespaces
If you use transportable tablespaces, you know that in Oracle Database 10g these
tablespaces had to be made read/write in order to back them up. This is no longer
the case and transportable tablespaces that are read-only will be backed up.

Oracle Flashback-Related New Features
Oracle Database 11g introduces totally new Flashback-related features. First there is
Oracle Flashback Transaction Backout, which allows you to back out transactions
that are already committed. Then there is the Oracle Flashback Data Archives
feature, which provides the ability to track changes to a table over its lifetime. Let’s
look at each of these features in some more detail.

Arup Says…
One of the best things Oracle Database 9i offered was the block media
recovery feature. In today’s high-reliability storage area networks (SANs), the
probability of failure of an entire array is very minimal, but the chance of
isolated software or hardware corruption affecting one or more blocks is higher.
That’s where block media recovery really shone, allowing the repair to be really
fast and targeting the high-likelihood events. This also allowed the possibility of
repairing the disk instead of failing over to the standby database while still
within the realm of the service level agreement (SLA).

Oracle Database 10g offered a new feature—flashback logs. The moment
I heard about it and tested it, my first question to the Oracle PM was: why not
make it part of the recovery process? Well, came the reply, there were many
complications, understandably so since we are talking about complex software
like Oracle. Now I am really excited to see these flashback logs being used for
additional purposes. Running a database in flashback mode incurs some
performance penalty, so now the penalty is somewhat justified by the more
efficient recovery.

Chapter 3: Oracle Database New Availability and Recovery Features 111

Oracle Flashback Transaction Backout
Oracle Database 11g adds a new feature to the Flashback toolkit, Oracle Flashback
Transaction Backout. This feature allows you to back out a committed transaction
and all dependent transactions while the database is still online. Only the selected
transactions and dependent transactions will be backed out, other transactions will
be untouched by the flashback transaction backout operation. This functionality is
provided through the dbms_flashback.transaction_backout procedure or though an
OEM interface into Flashback Transaction Backout.

Setting Up for Flashback Transaction Backout
To use Flashback Transaction Backout, there are some prerequisites that your
database must first meet. First you need to enable supplemental logging with
primary key logging as seen in this example:

Alter database add supplemental log data;
Alter database add supplemental log data (primary key) columns;

Grant execute on dbms_flashback to the user who will be performing the
Flashback Transaction Backout. Finally, grant select any transaction to the user
who will be performing the Flashback Transaction Backout. One benefit of using
OEM with Flashback Transaction Backout is that it checks for the correct
permissions and will inform you if the user is not able to perform Flashback
Transaction Backout, and OEM will also tell you what actions need to be performed
to be able to execute a Flashback Transaction Backout.

Executing a Flashback Transaction Backout via OEM
OEM is probably easier to use than manual commands when processing a Flashback
Transaction Backout (we will just call this a transaction backout for the rest of this
section). To start a transaction backout, go to the Schema tab on the top of the
Database home page in OEM. Select tables from the Database Objects section of the
Schema page. From the Tables page, select a table to execute the transaction backout
operation on, and then select the Flashback Transaction action for the table you have
selected.

OEM will proceed to take you to the Flashback Transaction: Perform Query
page. This is where you can select the system change number (SCN) or time range
of the query you wish to perform on your transaction. Once you have selected the
needed information, Oracle will proceed to use Log Miner and mine all of the
transactions on the selected table over the given period of time. It will then present
the mined transactions on the next page for you to select. In Figure 3-9, Oracle
found two transactions that we can back out.

112 Oracle Database 11g New Features

NOTE
Mining of the transactions is the Achilles heel of this
whole process. It can take time if the start time and
end time for mining is quite broad. Thankfully OEM
does give you an estimate of how long the mining
process should last, and an option to cancel the
operation.

You can click on any transaction ID and see the details of that transaction. This
allows you to ensure that you have, in fact, found the correct transaction. Note that
this information is collected from Log Miner, so the DML statement reported by
Oracle may be presented somewhat differently than the one you actually executed.
For example, a statement like the following: insert into Robert values (10,10,10);
will be reported as insert into “ROBERT”.“TEST” values “ID” = 10, “ID2”= 10,

FIGURE 3-9. Oracle OEM Flashback Transaction page

Chapter 3: Oracle Database New Availability and Recovery Features 113

“DEF_ID” = 10;. These statements used to back out the transaction are known as
compensating transactions.

To continue the operation, we click on the radio button associated with the
transaction we wish to back out and click on Next. Oracle will then generate a
flashback transaction report that will provide you with the SQL required to undo
that transaction. After reviewing the SQL, you can choose to run that SQL to remove
the transaction. You can also choose to cancel the operation.

Executing a Flashback Transaction Backout Manually
You can also manually execute a transaction backout. This is a much more complex
and manual procedure, but available if you need to write an application with this
capability or if you are just a DBA masochist and demand to be able to do it this
way. To perform the backout, you will first need to know the transaction ID that you
wish to deal with. The V$TRANSACTION view provides this for you with the XID
column if you are in the middle of a transaction. Optionally you could use Log Miner
to find the candidate transaction IDs. Here is an example of finding the transaction
ID from V$TRANSACTION (in this case, we will cheat a little bit and assume it’s a
delete transaction):

select a.sql_text, b.xid
from v$open_cursor a, v$transaction b, v$session c
where a.sid=c.sid and c.taddr=b.addr
and a.sql_text like 'delete';

SQL_TEXT XID
--- ----------------
delete from employee where empno=25 03001800BC0D0000

Now we can simply use the dbms_flashback.transaction_backout procedure to
back out the procedure. Note that this procedure is overloaded, and there are several
different ways to generate the backed-out transaction. Review the documentation for
more details on the variety of ways to perform the backout operation. Here is an
example using the transaction ID:

Declare
 v_xid sys.xid_array;
begin
 v_xid := sys.xid_array('03001800BC0D0000');
 dbms_flashback.transaction_backout(numtxns=>1,
 xids=>v_xid, options=>dbms_flashback.cascade);
end;
/

114 Oracle Database 11g New Features

When the transaction backout occurs, a report will be generated to the data
dictionary, which you can review. These reports are generated to the following tables:

 ■ [DBA, USER]_FLASHBACK_TXN_STATE Any transaction that is shown in
this view is backed out.

[DBA, USER]_FLASHBACK_TXN_REPORT ■ Provides information about the
compensating status of all transactions in the database.

Oracle Flashback Data Archives
Oracle Flashback Data Archives provides the ability to track changes that occur on
a table over the lifetime of the table. Until now many applications had to build in
logging for this kind of transaction monitoring. You can use the Flashback Data
Archives feature to satisfy security and compliance requirements. You can also use the
data for data analysis and within a decision support system (DSS) environment. Let’s
look at how to set up Oracle Flashback Data Archives and then how it can be used.

Set Up Oracle Flashback Data Archives
The user who will be defining any Flashback Data Archives will need to have the
privilege flashback archive administer granted to them, as seen in this example:

Grant FLASHBACK ARCHIVE ADMINISTER to Robert;

We are now ready to create a flashback data archive (which we will call
archives or an archive for the rest of this chapter). An archive contains all the data
required to track and archive historical transactional data. Once the archive is

Arup Says…
With the days of regulations and mandates such as HIPAA, SOX, PCI, and an
assortment of other hard-to-follow acronyms, comes an even more bitter pill—
the need to store historical data for legal reasons. Note the stress on the word
legal; the present requirement is not just slapping together a rag-tag homegrown
set of scripts to record the changes to satisfy your own curiosity or do some
debugging, but something that can hold up in a court of law, or at least in a
formal inquiry. Flashback Data Archives come very handy in that respect.
Combine that with low-cost storage such as NAS, and you’ve got yourself a
great archive solution.

Note that the flashback archive is not based on triggers, so the performance
penalty on queries is not substantial. The functionality of writing the archives is
embedded in the code of the database. I have described more use cases of
Flashback Data Archives in the Appendix.

Chapter 3: Oracle Database New Availability and Recovery Features 115

created you can begin to track changes. To create the archive we use the create
flashback archive SQL DDL command. When you create the archive, you will
assign the archive to a tablespace and assign it a space quota and a retention
period. Note that you may have many different archives. Each of these might be
assigned different retention criterion (say one year, and two years). The records in
each archive will be managed by Oracle, with records being purged after the
retention criteria has expired.

NOTE
Archives are likely to get quite large. Make sure
you allocate enough space to the archive when you
create it!

In the following example of the creation of a flashback archive we create the
archive with a retention period of one year. This archive is assigned to the
retention_archives tablespace and is the default archive for the database (this
command would fail if a default already existed). Note that since we defined this as
the default archive, you must be logged in with sysdba privileges.

We have assigned a quota of 5G to this archive. By default the quota is
unlimited. If an archive is assigned a quota and the archive fills up, you will not be
having a good day. DML operations on the tables assigned to that archive will fail,
you will get all sorts of nastygrams in the mail, and your boss will complain about
irritating DBAs who always like to set up newfangled features when they come up.
If you are still feeling brave, here is an example DDL to create an archive called
archive_one_year :

Create flashback archive default archive_one_year
tablespace retention_archives
Quota 5g retention 1 year;

We might want to create another archive for two-year retention. This would not
be the default archive of course. Here is the creation of the two-year archive (using
a 24-month retention criteria instead of years). Note that in this case we do not have
to be logged in as a sysdba user since we are not defining a default archive:

Create flashback archive archive_two_year
tablespace retention_archives
Quota 5g retention 24 month;

Retention can be in terms of years, months, or days and the quota can be
expressed in megabytes (M), gigabytes (G), terabytes (T), and petabytes (P). Good
luck to you if you are using petabytes of archival!! Please write to me and let me
know how that goes! When an archive is created it can only be assigned to a single

116 Oracle Database 11g New Features

tablespace (or tablespace group). Archives can be assigned to other tablespaces
using the alter flashback archive command discussed in the next section.

Administer Oracle Flashback Data Archives
The alter flashback archive and drop flashback archive commands are used to
manage existing archives. The alter flashback archive command can be used to
make an existing archive the default archive (you can only have one default archive
at a time) or change the current default archive to become a nondefault archive.
You can also change the retention time of the archive and purge some or all of the
archives data. Finally you can modify the tablespace assignment of the archive by
adding, modifying, or removing tablespaces assigned to the archive. Here are some
examples of using the alter flashback archive command:

-- Make Flashback Data Archive archive_two_year the default Archive:
-- Note that archive_one_year will no longer be the default!!
-- also note, you must be SYSDBA to execute this command.
ALTER FLASHBACK ARCHIVE archive_two_year SET DEFAULT;
-- To Flashback Data Archive archive_two_year,
-- Add to tablespace retention_one and make the quota 5g on that tablespace:
ALTER FLASHBACK ARCHIVE archive_two_year
ADD TABLESPACE retention_one QUOTA 5G;
-- Change the maximum space that Flashback Data Archive archive_two_year
-- can use in tablespace retention_one 20 G:
ALTER FLASHBACK ARCHIVE archive_two_year
MODIFY TABLESPACE retention_one QUOTA 20G;
-- Change the maximum space that Flashback Data Archive archive_two_year
-- can use in tablespace retention_one to unlimited:
ALTER FLASHBACK ARCHIVE archive_two_year
MODIFY TABLESPACE retention_one;
-- Change the retention time for Flashback Data Archive archive_two_year
-- to five years:
ALTER FLASHBACK ARCHIVE archive_two_year MODIFY RETENTION 5 YEAR;
-- Remove tablespace tbs2 from Flashback Data Archive archive_two_year:
-- Note that this will fail if archive_two_year is the last tablespace
-- assigned to this archive.
ALTER FLASHBACK ARCHIVE archive_two_year REMOVE TABLESPACE bad_tbs;
--Purge all historical data from Flashback Data Archive archive_two_year:
ALTER FLASHBACK ARCHIVE archive_two_year PURGE ALL;
-- Purge all historical data older than 30 days from Archive archive_two_year:
-- Note that an error will occur if you purge to a time before that archive
-- was created.
ALTER FLASHBACK ARCHIVE archive_two_year
PURGE BEFORE TIMESTAMP (SYSTIMESTAMP - INTERVAL '30' DAY);
-- Purge all historical data older than SCN 728969 from Archive archive_two_year:
ALTER FLASHBACK ARCHIVE archive_two_year PURGE BEFORE SCN 6443333;

As you might expect, the drop flashback archive command is used to drop a
flashback archive. Of course, this does not drop the associated tablespace, which is
probably a good thing since the tablespace might actually have some useful data
still in it! Here is an example of the drop flashback archive command in use:

Drop flashback archive archive_two_year;

Chapter 3: Oracle Database New Availability and Recovery Features 117

Enable Oracle Flashback Data Archives
By default, archiving is disabled. You can enable archiving on specific tables when
you create the table or you can alter the table to enable archiving. Here are
examples of using the create table command and the alter table command to
enable archiving:

-- Create the table, using the default archive location.
Create table test_arch (id number) tablespace users flashback archive;
-- Modify a table to use the default archive location.
Alter table other_test flashback archive;
-- Create a table to use a non-default archivelocation
Create table test_arch (id number) tablespace users
flashback archive archive_two_year;
-- Modify a table to use a non-default archive location.
-- Note that if you are archivng this table already, this command
-- will fail. You need to no flashback archive the table first.
-- So that archived data will be lost.
Alter table other_test flashback archive archive_two_year;
-- Modify a table to stop archiving.
Alter table other_test no flashback archive;

NOTE
If you turn off archiving for a table, all the historical
data for that table will be lost. If you drop a
flashback archive, then all data contained in that
archive is lost too.

Note that when a table is being archived, certain DDL commands are disabled
for that object. These include certain alter table commands and the drop table,
rename table, and truncate table commands. Also commands that modify a column
are not allowed. For example, after the creation of the test_arch table in the previous
example, we cannot drop that table, as seen here:

SQL> drop table test_arch;
drop table test_arch
 *
ERROR at line 1:
ORA-55610: Invalid DDL statement on history-tracked table

Well, this is a fine predicament we find ourselves in! However, Oracle is smarter
than that. All we need to do is disable archiving and then we can drop the object, as
seen in this example:

SQL> Alter table test_arch no flashback archive;
Table altered.
SQL> Drop table test_arch;
Table dropped.

118 Oracle Database 11g New Features

NOTE
Because of the DDL restrictions associated with
archiving, you need to use this feature cautiously
with existing legacy systems.

Oracle Flashback Data Archives Views
Oracle provides views that you can use to administer Flashback Data Archives.
These views include:

 ■ [DBA|USER]_FLASHBACK_ARCHIVE Provides information on all
flashback archives contained in the database.

DBA_FLASHBACK_ARCHIVE_TS ■ Provides information on all tablespaces
that contain flashback archives.

[DBA|USER]_FLASHBACK_ARCHIVE_TABLES ■ This view indicates which
flashback archive a given table is assigned to. If a table is not assigned to a
flashback archive, it will not appear in this view.

Here are some example queries against these views:

select * from dba_flashback_archive;
FLASHBACK_ARCHIVE_NA FLASHBACK_ARCHIVE# RETENTION_IN_DAYS STATUS
-------------------- ------------------ ----------------- -------
ARCHIVE_ONE_YEAR 1 365
ARCHIVE_TWO_YEAR 2 1825 DEFAULT

 select * from dba_flashback_archive_ts;
FLASHBACK_ARCHIVE_NA FLASHBACK_ARCHIVE# TABLESPACE_NAME QUOTA_IN_MB
-------------------- ------------------ -------------------- -----------
ARCHIVE_ONE_YEAR 1 RETENTION_ARCHIVES 50
ARCHIVE_TWO_YEAR 2 RETENTION_ARCHIVES 50
ARCHIVE_TWO_YEAR 2 RETENTION_ONE

select table_name, owner_name, flashback_archive_name
from dba_flashback_archive_tables;
TABLE_NAME OWNER_NAME FLASHBACK_ARCHIVE_NA
--------------- ------------------------------ --------------------
TEST ROBERT ARCHIVE_TWO_YEAR
OTHER_TEST ROBERT ARCHIVE_TWO_YEAR

Using Oracle Flashback Data Archives
So, now that we have configured archiving, how do we use it? It’s really quite
simple, as the Flashback Data Archives feature is an extension of the existing
Flashback technologies already in place. Before, we were subject to the availability
of undo and its retention. If the undo was available, then we could flashback a table

Chapter 3: Oracle Database New Availability and Recovery Features 119

easily and see how it looked back in time; if the undo was not available, then the
flashback efforts would fail. Guaranteed retention of undo helped to stabilize the
availability of undo, but this was a global parameter, and could cause the whole
database undo structure to become large and difficult to manage.

Oracle’s Flashback Data Archives feature would make Mulder and Scully proud.
It is a time machine, allowing you to preserve undo at a table level for as long as
might be required. Because this feature is granular to the table as opposed to the
database, the space impacts are reduced for long-term undo storage. Now, SQL
queries using the as of timestamp parameter are no longer subject to limited undo
storage, so queries such as the following are possible:

Select id from test as of timestamp (systimestamp - interval '6' month);

We can now also use the flashback table command to flashback the table to a
much further back time in history, as seen in this example:

Flashback table test to timestamp (systimestamp – interval '6' month);

Oracle Standby Database New Features
Oracle Database 11g offers new features for your standby database. These include
lost-write detection, compression of archived redo logs, real-time query capabilities
on physical standby databases, and snapshot databases. Let’s look at these new
features next!

Lost-Write Detection
Oracle physical standby databases now provide lost-write detection. Typically, Oracle
will make a write request to the IO subsystem and the IO subsystem will write the data
and report that the write was successful (with an asynchronous write, the IO subsystem
may actually report that the write was complete when in fact it is just queued to be
written). Lost-writes occur when the IO subsystem actually does not write the data to
the physical medium. This can cause data loss in the Oracle database.

If you are running a physical standby database in Oracle Database 11g, Oracle
physical standby databases can detect the corruption. When this error is detected,
Oracle recommends switching over to the physical standby database, making it the
primary database. You can then re-create the primary database.

NOTE
RMAN block-level recovery should also be possible
in this case. This would require re-creation of your
physical standby databases, however, you should
determine your site’s recovery strategy before such
an event occurs!

120 Oracle Database 11g New Features

This new feature leads to quicker identification of problems and reduced down
time. When the physical standby database detects the lost write, it will generate an
error in the alert log of the standby database and managed recovery will be halted.

Compression of Archived Redo Logs
Oracle will now compress archived redo logs when they are sent to a standby
database site for gap resolution. This can significantly reduce the bandwidth
required to get standby databases “caught up” in the case of gap resolution.

Real-Time Query Capabilities from a Physical
Standby Database
You can now query a physical standby database at the same time that the standby
database is applying redo. This makes the physical standby database much more
cost-effective and useful than before. You do not need to do anything special to
enable this feature. Simply start redo, apply as you normally would, then open the
standby database in read-only mode.

Snapshot Databases
Oracle Database 11g introduces snapshot databases. These databases allow you to
open a physical standby database, and change data and structures in that database,
all while continuing to collect (but not apply) redo. You convert the physical

Arup Says…
Many organizations struggling with the need to maintain a true 99.999%
uptime environment pondered over the question, should they invest in a
redundant set of hardware in the physical standby database which is 99.999%
idle? And they couldn’t even run reports from it without sacrificing the ability to
failover very quickly. Logical standby databases solved the issue somewhat, but
they were not the answer, primarily because the logical standby database can’t
be used for backups. Physical standby database can offload the CPU cycles
required for backups from the main database to itself, saving precious resources
in the primary. These backups and archived logs could be applied to the main
database as if they were taken on the primary.

The real-time query capability of the physical standby database solves the
issue in the most logical way. It can be a physical standby and you can also run
reports off it, in addition to running RMAN backups. Now, you can justify the
high cost of the standby infrastructure. Who says you can’t have your cake and
eat it too?

Chapter 3: Oracle Database New Availability and Recovery Features 121

standby database to a snapshot database by issuing the command alter database
convert to snapshot standby. When this command is executed, Oracle will create a
guaranteed restore point, which will be used later to flashback the standby database
to the point at which it was converted, allowing Oracle to once again begin to
apply redo to the standby database.

Once the standby database has been converted to a snapshot database, you can
then open the database for read/write operations. You can then change the database
as much as you like. Once you are ready to revert the database to a standby database.
you issue the command alter database convert to physical standby.

NOTE
Oracle flashback database is used to revert the
snapshot database to a standby database. Any
operation that might occur when the snapshot
database is open in read/write mode that would
prevent flashback operations, will prevent you from
being able to reopen the database as a standby
database.

Oracle Data Pump New Features
Oracle Data Pump was introduced in Oracle Database 10g and is further improved
in Oracle Database 11g. In this section we will cover the following features:

 Export utility deprecation ■

Compression of dump file sets ■

Improvement in encryption ■

Arup Says…
The power of the snapshot standby database is somewhat clouded by all that
razzmatazz in Oracle Database 11g. Imagine this: You are trying to figure out
the best possible configuration of the database host, network, storage and all
such systems. How can you do it? It’s really simple. Create a snapshot standby
database from the primary database, replay the workload captured from
primary using the Database Replay feature and measure the performance. Then
flashback the standby to the original state, change the parameters you want and
replay the workload again. Repeat this cycle until you are satisfied with the
changes you want to cast in stone. Then convert the snapshot standby database
to a regular one.

122 Oracle Database 11g New Features

Data remapping ■

Table renaming ■

Data Pump and partitioned table operations ■

Overwrite dump files ■

The ■ data_options parameter

The ■ transportable parameter

Exp Utility Deprecated
I’ve got good news and bad news about the old exp utility. The bad news is that it’s
no longer supported by Oracle. If you find a bug, it’s likely that you are not going to
get it fixed in 11g. The good news is that the exp utility does still ship with Oracle
Database 11g. So, your scripts that call exp will live to see yet one more version of
the database. Fair warning though, there is no telling how much longer exp will be
around. Besides, if you are reading this book, you are a hip kind of DBA! You don’t
go for the old-fashioned technologies. Finally, the imp utility is still supported.

Compression of Dump File Sets
I’m sure that you get irritated at the size of dump file sets; I do. Oracle has heard our
groans and now supports compression of Dump file sets. However, they missed the
key word in our groans, and that word was “free.” Availability of compression is a
part of a new licensed product called the Advanced Compression option, which will
be available for both standard and enterprise editions of Oracle Database. Let’s all
say boo together to see if they hear that sentiment as well.

Use of compression with Data Pump is facilitated through the use of the
compression parameter of the expdp command, as seen in this example:

expdp Robert/robert DIRECTORY= data_pump_dir DUMPFILE=hr_comp.dmp
COMPRESSION=ALL

There are four options available for the compression parameter:

 ■ ALL Enables compression for the entire operation.

Metadata_only ■ The default setting. Causes only the metadata to be
compressed.

Data_only ■ Only the data being written to the dump file set will be
compressed.

None ■ No compression will take place.

Chapter 3: Oracle Database New Availability and Recovery Features 123

Data Pump Encryption Enhancements
It seems to be in the news every week now, some company’s data being
compromised. If your data is sensitive, then encrypting the Data Pump dump files
makes sense. Data Pump comes with new features associated with encryption:

 You can choose to encrypt metadata, data, or both via the use of the new ■
encryption parameter.

You can choose a specific encryption algorithm (AES128, AES192, or ■
AES256) using the encryption_algorithm parameter.

You can choose different encryption modes to be used on the export. (Dual, ■
Password, and Transparent) via the encryption_mode parameter. This now
allows you to use the Oracle Encryption Wallet with Data Pump.

Here is an example of using the new encryption parameters for a data pump
export:

expdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=hr_comp.dmp
encryption=all encryption_password=Robert encryption_algorithm=AES128
encryption_mode=PASSWORD

Data Pump Data Remapping (Obfuscation)
Oracle Data Pump now offers the ability to obfuscate data during an export or
import operation. This functionality is supported with the use of the new remap_
data parameter. With the remap_data parameter you define the schema table
.column object(s) to be remapped, and you also define an associated function that
will be called “remap” (or obfuscate) the column data. Oracle supports multiple
remappings. Each remapping can use the same or a different remapping function.

As an example, we might have the following function that modifies input data:

Create or replace package my_package
as
function my_function (p_in_data varchar2)
return varchar2;
end;
/
Create or replace package body my_package
as
function my_function (p_in_data varchar2)
return varchar2
As
 v_return varchar2(30);

124 Oracle Database 11g New Features

begin
 v_return:=translate(p_in_data,
 'abcdefghijklmnopqrstuvwxyz',
 'bcdefghijklmnopqrstuvwxyza');
 dbms_output.put_line(v_return);
 return v_return;
end;
end;
/

Now, let’s export a table and apply this function to modify a column’s data. Here is
our test table:

SQL> desc names
 Name Null? Type
 --- -------- ----------------------------
 USER_NAME VARCHAR2(30)
SQL> select * from names;
USER_NAME

joe

And let’s do the export:

expdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=remap.dmp
tables=Robert.names remap_data=Robert.names.user_name:Robert.my_package
.my_function

Let’s reimport the data and see what it looks like (we dropped the table before we
did the import):

impdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=remap.dmp
tables=ROBERT.NAMES remap_table=ROBERT.NAMES:COPY_NAMES

We could have also remapped the data during the import as in this example:

impdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=remap.dmp
tables=ROBERT.NAMES remap_table=ROBERT.NAMES:COPY_NAMES
remap_data=Robert.copy_names.user_name:Robert.my_package.my_function

Arup Says…
One of the several requirements in today’s regulated environments is to mask
sensitive data such as credit card numbers, and so on, when moving production
data to test systems. This is a hard requirement to satisfy, especially if you have
a large database. It’s about time Oracle came up with a facility to support it.

Chapter 3: Oracle Database New Availability and Recovery Features 125

Data Pump Rename Table
Oracle Data Pump allows you to rename a table during the import process with the
remap_table parameter. With the remap_table parameter you define the original
table schema and name, and then indicate the new name for the table. Here is an
example where the table robert.names is renamed to copy_names:

impdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=remap.dmp
tables=ROBERT.NAMES remap_table=ROBERT.NAMES:COPY_NAMES

Data Pump and Partitioned Tables
You can control partitioning of tables during a Oracle Data Pump import by using
the new partition_options parameter of impdp. This parameter has the following
options:

 ■ None Tables will be imported such that they will look like those on the
system on which the export was created.

Departition ■ Partitions will be created as individual tables rather than
partitions of a partitioned table.

Merge ■ Causes all partitions to be merged into one, unpartitioned table.

Here is an example of the use of the partition_options parameter. In this case
we will take all partitions of the names table and combine them into one
unpartitioned table on the destination side:

impdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=remap.dmp
tables=ROBERT.NAMES partition_options=merge

Overwrite Dump Files
If you do lots of exports with Oracle Data Pump, you will be happy to know that
you now have the option to overwrite any dump file that might already exist. To
overwrite any pre-existing file, use the new reuse_dumpfiles parameter as seen in
this example:

expdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=remap.dmp
tables=ROBERT.NAMES reuse_dumpfiles=Y

Data Pump Data_Options Parameter
Oracle Data Pump has added the data_options parameter to provide for special
handling of certain types of data-related issues. This includes handling of constraint-
related issues during an import as well as how to handle xml_clobs.

126 Oracle Database 11g New Features

The xml_clobs option of the data_options parameter of the Data Pump Export
utility allows you to override the default behavior of Oracle Data Pump, which is to
compress the format of the xmltype clob. To use this option, the XML schemas at
the source and destination must be the same.

There may be times during an import that you will experience constraint
violations during an Oracle Data Pump import. The data_options parameter, when
set to skip_constraint_errors, will cause the import program to ignore errors
generated by database constraints unless the constraint error is due to a deferred
constraint. In the case of deferred constraints, imports will always be rolled back.

Here is an example of the use of the data_options parameter with impdp:

impdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=remap.dmp
tables=ROBERT.NAMES data_options=SKIP_CONSTRAINT_ERRORS

The Transportable Parameter
The transportable parameter of Oracle Data Pump import and export extends the
functionality of transportable tablespaces. Now, only the metadata associated with
specific tables, partitions, or subpartitions will be extracted, rather than all
metadata. You can then proceed to transport the associated data files as you
normally would. You import the data with impdp.

expdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=remap.dmp
tables=ROBERT.NAMES transportable=always

You then copy the data files and the dump file set to the destination and plug in the
database. You would use impdp as a part of this process to import the metadata into
the database, as seen in this example:

impdp Robert/robert DIRECTORY=data_pump_dir DUMPFILE=remap.dmp
tables=ROBERT.NAMES remap_schema=Robert:new_Robert

End of Line
Well, this has been another action packed chapter, hasn’t it? Again, we have looked
at a number of new and enhanced features in Oracle Database 11g that related to
availability and recovery, and there is no doubt that there are a lot of them and that
they are very useful. This has been perhaps one of my two favorite chapters to write,
as these are my favorite topics. Arup’s thoughts in this chapter are invaluable and
quite useful. Thanks for participating in this work Arup!

CHAPTER
4

Oracle Database Advisors

127

128 Oracle Database 11g New Features

racle keeps trying to make our life easier as DBA’s. Some time ago
Oracle Databases started coming out with these pesky things called
advisors, which kind of helped us to manage the database better.
Some of us went kicking and screaming, of course. It’s hard for a DBA
to give up his beloved command line scripts for tuning and monitoring

(and honestly, there are still a number of cases when we have to break out those
scripts). Oracle Database 11g continues the tradition of trying to help us do our jobs
(the nerve!). Old Advisors are improved and new advisors have been added such as

 ■ The Data Recovery Advisor

SQL Repair Advisor ■

Partition Advisor (SQL Access Advisor, or SAA) ■

Streams Performance Advisor ■

In this chapter we will cover these advisors in some detail.

NOTE
You will also want to review Chapter 9 and the
Automatic SQL Tuning, which offers improvements
on the SQL Tuning Advisor that was introduced in
Oracle Database 10g.

The Data Recovery Advisor
The new Data Recovery Advisor is used to repair a number of different errors
including data block corruption, undo corruption, and data dictionary corruption.
The Recovery Advisor is integrated with OEM, the Health Monitor, and RMAN to
help make dealing with data corruption problems as easy and seamless as possible.
For the Data Recovery Advisor to function, Oracle must first detect an error. This
can happen as a result of an error occurring naturally during the course of database
operations (that is, some form of an ORA error) or if the DBA executed a health
check that detects the error.

The Data Recovery Advisor will return the priority of the error (Critical, High,
and Low) and its status (Open or Closed) and provides repair options available to
you to correct the problem (such as perform media recovery). All information from
the Data Recovery Advisor is stored in the ADR. The repair options presented may
be automated or manual, or both options might be presented.

The Data Recovery Advisor can be reached within OEM from the OEM Database
home page or by using RMAN. Let’s look at both of these options in some more detail.

O

Chapter 4: Oracle Database Advisors 129

NOTE
The Data Recovery Advisor (DRA) functions can
only be run on a single-instance database (thus the
RAC cluster must be brought now to single-instance
mode). DRA also can not be used with a physical
standby database.

Using the Data Recovery Advisor Through OEM
Simply click on the Availability link and then click on the Perform Recovery link
(under the Manage Menu options), which will cause the Perform Recovery page to
appear as seen in Figure 4-1 (note that our example has one datafile with an error
appearing at the top of the page that needs to be corrected).

Figure 4-1. The OEM Perform Recovery page

130 Oracle Database 11g New Features

NOTE
Sometimes the Perform Recovery page will show a
database failure at the top, but the Oracle Advised
Recovery section will not show that there is a
problem. This is because the database advisor has
not completely “discovered” the failure. You can
run the DB Structure Integrity Checker (we discussed
checkers in Chapter 3) from Advisor Central and
the failure will be discovered. You can also click on
Database Failures, and proceed to correct the failure
through a slightly different avenue. The later method
is a bit more advanced, so you should be comfortable
with RMAN in particular, and understand your failure
well before you choose this method of recovery.

To start the Data Repair Advisor, you will need to specify the host login credentials.
Then under the Oracle Advanced Recovery section, click on the Advise and Recovery
button. Oracle will proceed to the View and Manage Failures page shown in Figure 4-2.
This page can display a number of different errors from data corruption, to loss of a
datafile (which is the problem in our case).

Figure 4-2. The OEM View and Manage Failures page

Chapter 4: Oracle Database Advisors 131

NOTE
If you have any critical errors, they must be selected
when you choose to click on Advise, or OEM will
generate an error.

From the OEM View and Manage Failures Page you select one or more failures
that you want repair advice for. Having selected the failure, you click on Advise to
start the appropriate advisor. In our case, this will take us to the next page, which
provides suggestions on how you might manually correct the problem. Sometimes
manual correction of the problem is the easiest thing to do. Figure 4-3 provides a
look at the Manual Actions page that we received related to our missing datafile.

If the manual advice is insufficient to correct the problem, click on the Continue
with Advise button. You will then find yourself on the Recovery Advice OEM page
seen in Figure 4-4. Clicking on continue from this page takes you to a Review page
where you can review the RMAN script that will be executed to perform your
recovery. Click on the Submit Recovery Job button, and OEM will proceed to
schedule the recovery.

Figure 4-3. The OEM Manual Actions page

132 Oracle Database 11g New Features

Once the job has been scheduled, the Job Activity OEM page will appear. You
can click on the View Results button to monitor the job while it is running. The Job
Run page for a database restore is seen in Figure 4-5. Also note in Figure 4-6 that the
page provides a breakdown of the work that the recovery operation will be doing.
This includes information including the specific job steps, the status of that step and
the time that the step either took, or has taken in the case of a running step. Refresh
the page as required until the job status has changed from Running to Succeeded.
Once the job is compete, you can click on the steps in the job breakdown to see the
output from those steps and determine if the step was truly successful.

Using the Data Recovery Advisor Through RMAN
Oracle has added new RMAN commands to allow you to execute the Data Recovery
Advisor from the command line. These commands are

 ■ List failure

Advise failure ■

Figure 4-4. The OEM Recovery Advice page

Chapter 4: Oracle Database Advisors 133

Repair failure ■

Change failure ■

Typically, when dealing with a data corruption error, the workflow will be to use
the list failure command, then the advise failure command and finally the repair
failure command, in that order. Let’s look at the use of these commands in a bit
more detail.

The List Failure Command The RMAN list command now has a new failure
parameter that will list detected failures and their priorities (Critical, High, or Low),
status (Open or Closed), the time when they occurred, and a summary of the failure.
In this context, a failure is any persistent data corruption that currently exists on
your system. Here is an example of the list failure command:

RMAN> list failure;
List of Database Failures
=========================

FIGURE 4-5. The OEM Recovery Advice page

134 Oracle Database 11g New Features

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
242 HIGH OPEN 19-SEP-07 One or more non-system
 datafiles are missing

Note that in the preceding sample output, the data files that are missing are not
listed. You can use the list failure detail command to generate additional details on
the failure. Additionally the list failure exclude failure n command allows you to
exclude specific failure numbers from the report output. Other options include
listing only closed failures, only critical failures, only failures with high or low
priorities, listing failures by failure ID, and excluding failures by failure ID. Here are
some examples of the use of these options:

RMAN> list failure detail;
List of Database Failures
=========================
Failure ID Priority Status Time Detected Summary

Figure 4-6. The OEM Recovery Advice page (job breakdown)

Chapter 4: Oracle Database Advisors 135

---------- -------- --------- ------------- -------
242 HIGH OPEN 19-SEP-07 One or more non-system
 datafiles are missing
 Impact: See impact for individual child failures
 List of child failures for parent failure ID 242
 Failure ID Priority Status Time Detected Summary
 ---------- -------- --------- ------------- -------
 470 HIGH OPEN 19-SEP-07 Datafile 4:
'/oracle01/oradata/orcl/users01.dbf' is missing
 Impact: Some objects in tablespace USERS might be unavailable

-- Let's exclude failure_id 242… We should see no failures then.
RMAN> list failure exclude failure 242;
no failures found that match specification

NOTE
The list failure command can only be run on a
single-instance database (thus the RAC cluster must
now be brought to single-instance mode). You also
cannot use this command with a physical standby
database.

Note that the list failure command does not check for database errors in and of
itself. The database is constantly checking for corruption issues, and those issues are
recorded in the data dictionary on a regular basis (see more on the data dictionary
and the recovery advisor later in this chapter). Therefore, it may be that some time
will pass between when the corruption occurs (such as the loss of a data file) and
the time it appears in the output of the list failure command. In our testing, this time
lag has never been very long.

If an OPEN failure appears in the list, it will be linked to one or more repair
actions that you can view via the new advise failure command. These options will
help you to determine what repair options are available to correct the situation.
Let’s look at that command next.

NOTE
If you just have a data file offline, then that data file
will not be reported as a failure. If the offline data
file is physically missing, then it will be reported as
a failure.

The Advise Failure Command Once the list failure command displays an open
failure, the advise failure command can be used to provide recommended actions

136 Oracle Database 11g New Features

that you can take to correct the failure. Here is an example of using the advise
failure command:

RMAN> advise failure;
List of Database Failures
=========================
Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
242 HIGH OPEN 19-SEP-07 One or more non-system
 datafiles are missing
analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=117 device type=DISK
analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
1. If file /oracle01/oradata/orcl/users01.dbf was unintentionally renamed or
moved, restore it

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 4
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /oracle/app/oracle/diag/rdbms/orcl/orcl/hm/reco_2909488425.hm

You will notice from the output that RMAN provides both manual and automated
repair options. The automated repair option contains RMAN commands (listed at
the bottom of the report as the Repair Script) that can be used to correct the problem.
Also note that repair options may involve data loss, and that the Data Recovery
Advisor will indicate whether data loss will occur if a given recovery option is used.
These commands are contained in a file within the ADR structure (discussed in
Chapter 2). Here is an example of the recovery file:

 # restore and recover datafile
 sql 'alter database datafile 4 offline';
 restore datafile 4;
 recover datafile 4;
 sql 'alter database datafile 4 online';

You can choose to run the recovery file manually or you can use the repair
failure command, which is our next topic.

The Repair Failure Command Now that we have detected a failure and determined
the recovery actions recommended by Oracle, we can manually repair the failure,
or allow Oracle to repair the failure automatically with the repair failure command.

Chapter 4: Oracle Database Advisors 137

To run the repair failure command the target database instance must at least be
started. Some recovery operations (such as loss of an individual data file) will allow
the database to be open. If multiple repairs are required, Oracle will try to consolidate
them into one repair operation. Also, RMAN will double-check that the failures still
exist, and will not perform a recovery operation if the failure has been corrected. Here
is an example of using the repair failure command from RMAN (we have removed
some RMAN output for brevity’s sake):

RMAN> repair failure;
Strategy: The repair includes complete media recovery with no data loss
Repair script: /oracle/app/oracle/diag/rdbms/orcl/orcl/hm/reco_3113080068.hm
contents of repair script:
 # restore and recover datafile
 sql 'alter database datafile 4 offline';
 restore datafile 4;
 recover datafile 4;
 sql 'alter database datafile 4 online';
Do you really want to execute the above repair (enter YES or NO)? yes
executing repair script
Starting restore at 19-SEPT-07
using channel ORA_DISK_1
... Typical RMAN restore output is removed for brevity...
Starting recover at 19-SEPT-07
using channel ORA_DISK_1
... Typical RMAN recover output is removed for brevity...
media recovery complete, elapsed time: 00:00:03
Finished recover at 19-SEPT-07
sql statement: alter database datafile 4 online
repair failure complete

NOTE
Again, the repair failure command can only be run
on a single-instance database (thus the RAC cluster
must now be brought to single-instance mode). Note
that this command will not repair failures such as
data files that cannot be accessed by a specific node
in an RAC cluster.

If you wish to preview a failure action, you can use the repair failure preview
command. This command will display the repair actions to be applied, but not
execute the repair itself.

The Change Failure Command The RMAN change command now has a new
failure keyword that allows you to change the status of failures detected by the
Oracle database. For example, you can change the priority of a specific failure, or

138 Oracle Database 11g New Features

all failures from high to low. You can also opt to close one or more failures. By
default RMAN will prompt you to ensure that you wish to make the change. You
can use the noprompt clause of the change command to force the change to occur
without prompting. Here is an example where we changed the priority of failure
187 to LOW:

RMAN> Change failure 187 priority low;
List of Database Failures
=========================
Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
187 HIGH OPEN 09-JUN-07 One or more non-system
 datafiles are missing
Do you really want to change the above failures (enter YES or NO)? yes
changed 1 failures to LOW priority

NOTE
You can not switch the status of a CLOSED failure to
OPEN.

Arup Says…
How much value does the Data Recovery Advisor add in real-life situations?

Plenty. Imagine a sort of robotic DBA that analyzes and advises but never
takes any action. Consider a scenario like this: It’s New Year’s Eve; everyone is
incommunicado except the lowly, very green, junior DBA who is holding down
the fort. And now he gets the alert—datablock corruption. Well, there is a time
and place for everything, and hitting the manuals to understand the error is not
the right thing to do at that time. The DBA needs advice: solid, practical, and
actionable advice he can use at that moment, not hours spent in analysis.
DRA comes in very handy here. Perhaps it does not help a seasoned DBA in
understanding the issue any more than the DBA would have independently
without help, but for a nonseasoned average DBA, that could translate to the
difference between days and minutes to get back into operation.

The other advantage comes in the aid of RMAN commands. It’s no secret
that RMAN commands are cryptic and daunting even for the most seasoned
DBAs. The DRA builds out the RMAN scripts to perform the necessary action,
which is a great timesaver in my opinion.

Chapter 4: Oracle Database Advisors 139

Data Recovery Advisor Data Dictionary Views
Several new views have been added to Oracle Database 11g to support the Data
Recovery Advisor. These views start with V$IR as seen in the following table.

Here are some example queries:

-- Do we have an open error reported?
select failure_id, time_detected, description from v$ir_failure
Where status='OPEN';

FAILURE_ID TIME_DETE DESCRIPTION
---------- --------- --
 242 19-SEP-07 One or more non-system datafiles are mis
 sing
 605 19-SEP-07 Datafile 4: '/oracle01/oradata/orcl/user
 s01.dbf' is missing

The SQL Repair Advisor
There is a Monty Python sketch called “The Office.” In it, two office workers observe
several persons jumping from higher levels of the building, apparently to their death.
In the sketch, they make it appear that these are executives. After some investigation,
we found out that in fact, they were SQL developers jumping to their death.

View Name Description

V$IR_FAILURE Provides information on the failure. Note that records
in this view can have parent records within this view.

V$IR_FAILURE_SET This table provides a list of the various advice records
associated with the failure. This allows you to join
the view V$IR_FAILURE to the V$IR_MANUAL_
CHECKLIST view.

V$IR_ MANUAL_CHECKLIST This view provides detailed informational messages
related to the failure. These messages provide
information on how to manually correct the problem.

V$IR_REPAIR This view, when joined with V$IR_FAILURE and
V$IR_FAILURE_SET, provides a pointer to the
physical file created by Oracle that contains the
repair steps required to correct a detected error.

140 Oracle Database 11g New Features

Why? Because SQL statements can be maddeningly frustrating to write. Often just
getting the where clause just right can be a time-consuming process. Then comes,
the inevitable ORA-0600 errors (or other ORA errors). In the end, it’s clear that SQL
was the inspiration of the “Office” sketch.

So, how do we make things better? ORA-0600s are going to happen. ORA-7445s
are going to happen, Daleks are going to happen (oh, wait…wrong tool… just need a
sonic screwdriver for them, sorry about that!). Enter the SQL Repair Advisor. When a
SQL statement has failed, you can run the SQL Repair Advisor. The SQL Repair Advisor
will analyze the statement and will provide a recommendation. This recommendation
can sometimes be in the form of a patch, which you can implement. You should test
the patch if you choose to implement it.

The SQL Repair Advisor is run from the Oracle Support Workbench (see Chapter 3
for more information on the Support Workbench). An instance of an ORA-0600 will
create a problem within the Workbench. Select the ORA-0600 problem that is
associated with your SQL statement. From the Problem Details page you can then
choose to start the SQL Repair Advisor. After the SQL Repair Advisor has completed
executing, it will provide you with an option to review the suggested recommendation
and provide you with the ability to implement that feature. You can also view,
disable, and remove patches from the SQL Workbench.

The SQL Access Advisor

NOTE
We have not covered manually running the SQL
Access Advisor in this chapter rather on purpose.
The process is largely unchanged. If you are
manually running SQL Access Advisor tasks in 10g,
you will still use the dbms_advisor.execute_task
procedure to generate the SQL Access Advisor
recommendations.

The SQL Access Advisor (SAA) has been improved to provide advice on
partitioning tables (including materialized views) and indexes to provide better
performance of SQL statements. Also, the indexing and materialized view
recommendations of the SQL Access Advisor may now include partitioning
recommendations for those new objects. As in previous versions of the Oracle
database you can access the SQL Access Advisor from OEM or from the use of the
dbms_advisor PL/SQL Oracle-supplied package. Note that if you are using the SQL
Access Advisor from OEM, by default the analysis that includes recommendations
for the use of materialized views is not selected.

Chapter 4: Oracle Database Advisors 141

NOTE
The advisors in Oracle Database 10g used SQL
workloads, which contained the workload data
that would be used for Oracle Advisor analysis. In
Oracle Database 11g you should create SQL Tuning
Sets, which replace the SQL workloads, instead. You
can still use SQL workloads, but SQL Tuning Sets are
the recommended means of defining workloads for
the advisors.

You should already be familiar with the SQL Access Advisor, it’s not new to
Oracle Database 11g. To start the SQL Access Advisor you will go to the Advisor
Central page from the OEM home page. From there click on the SQL Advisors link.
On the SQL Advisors OEM page you will see the SQL Access Advisor link. Click on
that link and you will find yourself taken to the first page of the SQL Access Advisor.
From this page you can instruct the SQL Access advisor to either verify the use of
various access structures, or you can have it recommend new structures, which is
what we are interested in. Simply click on the continue button to proceed.

The next page is the SQL Access Advisor Workload Source page. This page
provides us with a number of different ways of executing the SQL Access Advisor.
We can have it analyze existing workloads in the shared pool. We can have it
analyze a given SQL Tuning Set, or we can have it generate a hypothetical workload
from an existing schema and tables within that schema. This page has not really
changed since Oracle Database 10g.

Having selected our workload, we click on next and find ourselves on the SQL
Access Advisor: Recommendation Options page. While this page is not new, there
is a new structure option that we can ask the SQL Access Advisor to recommend,
partitioning. If we wish the SQL Access Advisor to make recommendations for
partitioning existing objects, click on the partitioning box as seen in Figure 4-7.

Clicking on Next, the rest of the SQL Access Advisor workflow is pretty much
unchanged since Oracle Database 10g. You will be taken to a page to schedule the
execution of the advisor (use the blindfold option before scheduling the execution
please), and following the scheduling page will be the SQL Access Advisor Review
page.

From this later page, you click on the Submit button and the SQL Access
Advisor will start doing it’s job. OEM will take you to the Advisor Central page
where you can monitor the execution of the SQL Access Advisor analysis, and wait
for it to complete.

Once the analysis is complete, you can view the results of the SQL Access Advisor
Task by clicking on the name of the task on the Advisor Central page. The resulting
page that is presented in OEM is the summary result for the SQL Access Advisor
which is somewhat large so it’s presented in Figures 4-8 and 4-9. In Figure 4-8 we

142 Oracle Database 11g New Features

have a summary of information about the completed SQL Access Advisor task. We
also see four different tabs that we can select from (Summary, Recommendations, SQL
Statements and Details). Each tab provides us with different information that has been
gathered by the SQL Access Advisor task that was executed.

In Figure 4-9 we see a graphical representation of the positive effects that Oracle
expects you will see when you implement it’s recommendations. You can see the
old workload I/O cost and estimated Workload I/O cost (in our case, it seems to be
a pretty big I/O savings). Further we can see that there is an expected 8x query
execution time improvement expected, a big plus in my books for sure! Finally on
Figure 4-9 we can see the number of recommendations (1 in this case) that were
made by the SQL Access advisor.

We can click on the Recommendations link of the Result page and see more
specifics with regards to the recommendation. Of most interest here is the lower portion
of the page as seen in Figure 4-10. Here we see each individual recommendation.
These recommendations are color coded so you can easily see what they are. In our
case, we have an index recommendation and a partitioning recommendation (ah, our

FIGURE 4-7. OEM SQL Access Advisor Recommendation Options page

Chapter 4: Oracle Database Advisors 143

new feature there!). It is from this page that you can schedule the implementation of
any recommendations. Simply check (or uncheck) any recommendations you wish to
implement and then click on the schedule implementation button. Oracle will proceed
to implement the recommendations for you,

If you want to check Oracle’s work before you implement it’s recommendations,
or if you wish to implement them manually, you can click on the Show SQL button
and see the detailed SQL statements that the advisor is recommending that you
execute. In this example here are the recommendations that the Advisor made and
would implement if we instructed it to do so (we have cut some of the SQL generated
out for brevity):

Rem SQL Access Advisor: Version 11.1.0.6.0 – Production
Rem Repartitioning table "SCOTT"."MY_TAB"
SET SERVEROUTPUT ON
SET ECHO ON
Rem Creating new partitioned table
Rem

FIGURE 4-8. OEM Summary Results page for SQL Access Advisor Task

144 Oracle Database 11g New Features

CREATE TABLE "SCOTT"."MY_TAB1"
("THE_DATE" DATE,
 "THE_COL" VARCHAR2(100),
 "SEQUENCE" NUMBER
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
TABLESPACE "USERS"
PARTITION BY RANGE ("THE_DATE") INTERVAL(NUMTOYMINTERVAL(3, 'MONTH'))
(PARTITION VALUES LESS THAN
(TO_DATE(' 2007-12-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
, 'NLS_CALENDAR=GREGORIAN')));

Rem Copying constraints to new partitioned table
Rem
ALTER TABLE "SCOTT"."MY_TAB1" ADD CONSTRAINT "PK_MY_TAB1"
PRIMARY KEY ("THE_DATE", "SEQUENCE")
USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS

FIGURE 4-9. OEM Summary Results page for SQL Access Advisor Task

Chapter 4: Oracle Database Advisors 145

TABLESPACE "USERS" ENABLE;
Rem Copying indexes to new partitioned table
Rem
CREATE UNIQUE INDEX "SCOTT"."PK_MY_TAB1" ON "SCOTT"."MY_TAB1"
("THE_DATE", "SEQUENCE")
PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS
TABLESPACE "USERS" ;
Rem Populating new partitioned table with data from original table
Rem
INSERT /*+ APPEND */ INTO "SCOTT"."MY_TAB1"
SELECT * FROM "SCOTT"."MY_TAB";
COMMIT;
begin
dbms_stats.gather_table_stats('"SCOTT"', '"MY_TAB1"', NULL,
dbms_stats.auto_sample_size);
end;
/

FIGURE 4-10. OEM Recommendations page for SQL Access Advisor Task

146 Oracle Database 11g New Features

Rem Renaming tables to give new partitioned table the original table name
Rem
ALTER TABLE "SCOTT"."MY_TAB" RENAME TO "MY_TAB11";
ALTER TABLE "SCOTT"."MY_TAB1" RENAME TO "MY_TAB";
/* RETAIN INDEX "SCOTT"."PK_MY_TAB" */

NOTE
For the SQL Access Advisor to work properly, you
need to ensure that the objects you wish it to make
recommendations on are properly analyzed.

The SQL Statements tab will provide you with details on the SQL statements that
will be impacted by the recommended changes. The Details tab will provide you
with specific details about the specific execution of the SQL access advisor, the
options that were used and any filtering that was used.

The Streams Performance Advisor
The dbms_streams_advisor_adm package contains a procedure called analyze_
current_performance. This procedure will gather information about your Oracle
streams components and analyze the performance of those components. To use this
package you run the analyze_current_performance procedure from the streams
administration account of a given system in your streams configuration.

Arup Says…
Partitioning has been one of the most valuable tools in the arsenal of the DBAs
to manage objects—large and small alike—but more of the large types. It’s
effective in cases of canned software as well, where the code can’t be changed.
However, ask an average DBA about partitioning and you will draw a blank.
Fear of the unknown combined with the general lack of understanding of where
to start looking for partitioning strategies plays a big role in not taking
advantage of this great tool.

SQL Access Advisor’s Partition Advisor changes all that. It analyzes the real
workload from your apps and makes partitioning recommendations. Granted,
the recommendations pale compared to those coming from a seasoned DBA or
architect, but it’s a start and a step in the right direction. I suggest you run the
SAA (with the partitioning option turned on) for the full workload and examine
the reports coming out of it, especially the partitioning recommendations. You
may be surprised to find one or two recommendations you can use, or at least
they will boost your thought process.

Chapter 4: Oracle Database Advisors 147

Typically you will want to run this procedure two or three times before you
review the results. After each run, determine the ADVISOR_RUN_ID from the DBA_
STREAMS_TP_COMPONENT_STAT view. You can then use the ADVISOR_RUN_ID
to query various views that contain the related advisor output including DBA_
STREAMS_TP_PATH_BOTTLENECK, DBA_STREAMS_TP_COMPONENT_STAT, and
others. Here is an example of using the Streams Performance Advisor:

-- First, run the advisor
SQL>exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;
SQL>exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;
SQL> SELECT DISTINCT ADVISOR_RUN_ID
 2 FROM DBA_STREAMS_TP_COMPONENT_STAT
 3 ORDER BY ADVISOR_RUN_ID;
ADVISOR_RUN_ID

 11
 12
-- Now query advisor views. We could lookup the components via the
-- DBA_STREAMS_TP_COMPONENT view… This view gives us a list of
-- bottlenecked components.
SELECT PATH_ID, COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE,
 COMPONENT_DB
FROM DBA_STREAMS_TP_PATH_BOTTLENECK
 WHERE BOTTLENECK_IDENTIFIED='YES' AND ADVISOR_RUN_ID=12
 ORDER BY PATH_ID, COMPONENT_ID;
Path ID Component ID Name Type Database
------- ------------ -------------------- -------------------- -------

 1 8 CAPTURE_MML CAPTURE DODO.NET
 2 8 CAPTURE_MML CAPTURE DODO.NET
 3 6 APPLY_PROC1 APPLY DODO.NET
 5 7 APPLY_PROC2 APPLY DODO.NET

Oracle Database 10g Database Advisor Views
A number of new views are available in Oracle Database 11g to assist you with SQL
tuning. These new views include the following:

 ■ DBA_ADVISOR_DIR_DEFINITIONS

DBA_ADVISOR_DIR_INSTANCES ■

[DBA|USER]_ADVISOR_DIR_TASK_INST ■

[DBA|USER]_ADVISOR_EXECUTIONS ■

DBA_ADVISOR_EXECUTION_TYPES ■

148 Oracle Database 11g New Features

[DBA|USER]_ADVISOR_EXEC_PARAMETERS ■

[DBA|USER]_ADVISOR_FDG_BREAKDOWN ■

DBA_ADVISOR_FINDING_NAMES ■

DBA_ADVISOR_PARAMETERS_PROJ ■

[DBA|USER]_ADVISOR_SQLA_COLVOL ■

[DBA|USER]_ADVISOR_SQLA_TABLES ■

[DBA|USER]_ADVISOR_SQLA_TABVOL ■

[DBA|USER]_ADVISOR_SQLA_WK_SUM ■

[DBA|USER]_ADVISOR_SQLPLANS ■

[DBA|USER]_ADVISOR_SQLSTATS ■

End of Line
The Oracle Advisors are there to help make our lives as DBA’s better. New DBA’s
benefit immensely from the Advisors, as they reduce the impact of the DBA learning
curve on the Enterprise. Even the old hand DBA’s are finding the advisors to be a
powerful ally, speeding up work and reducing the amount of typing of SQL
commands that we have to do.

The data recovery advisor introduced in Oracle Database 11g has such potential
to eliminate disaster. I don’t know how many times I’ve seen junior DBA’s attempt a
recovery, only to get it wrong. Now, we simply let Oracle figure things out and
viola, we are back in business.

The ability of the SQL Access Advisor to suggest partitioning is likewise a powerful
new feature, and one that will be very helpful to the DBA. The SQL Advisors are
designed to make administering the Oracle Database easier, so perhaps someday,
Junior DBA’s will not need to be hiding behind the sofa in fear of this powerful
database called Oracle.

CHAPTER
5

Oracle Database Change
Management

149

150 Oracle Database 11g New Features

his chapter is about new features related to change management in
Oracle Database 11g. With the new functionality that we introduce
you to in this chapter, you will find that you can reliably determine
the impact of a change to your systems. This allows you to be
proactive about change-related problems, rather than reacting after

the change has occurred. In this chapter we will discuss Database Replay and SQL
Performance Analyzer.

Database Replay
When you make changes that can impact your database, how do you gauge the
impact of those changes on that database and the users of that database? For
example, when you upgrade hardware or software, how do you quantify the
impacts of those changes on your user community? I’ve been involved in many
cases where what seemed like a simple patch set upgrade of the RDBMS software
version wreaked havoc with system performance. Customers want to avoid this
problem, of course, so they demand testing before you go live. The problem is that
testing can take time and be very expensive, and therefore, upgrades and changes
that can have a very positive impact on your system are delayed or not performed
simply because of the time and costs involved. What we need is a way to quantify
the impacts of these changes on the system.

Oracle Database 11g introduces Database Replay to address this very problem.
Database Replay has the potential to be the one new feature in Oracle Database
11g that will change the way you as a DBA do things, and potentially will make
your life easier. In the following sections we will look at Database Replay, how it
works, and how to put it to work for you.

NOTE
Database Replay will not solve all your testing
problems. For example, it will not address network
slowness issues that might occur between the
client and the server as a result of a network router
issue, but it’s a major improvement over what was
previously available and will help reduce database
finger-pointing since you can quantitatively state that
your database performance has not changed, or if it
has, how much it has changed.

Using Oracle Database Replay
Oracle Database Replay addresses the issues associated with environmental changes
by providing the ability to test the impact of those changes on a test system. Thus,
you can gauge the impacts of these changes before you move them to production.

 T

Chapter 5: Oracle Database Change Management 151

The testing takes a sample workload that you record during a given period of time
and “replays” it on your test system. Important workload attributes such as
concurrency and transactional dependencies are maintained to make the testing as
real-world as possible. What kinds of changes might you test? Such changes include:

 ■ Database upgrades

Database patch installs ■

RAC-related changes (adding nodes, interconnect changes, and so on) ■

OS platform changes and upgrades ■

Hardware changes (CPU, memory, or storage) ■

Once the testing is complete, you can analyze the test results and determine
whether there are any issues that need to be addressed. Issues that might come up
in testing include errors that might appear (perhaps you will discover a bug in the
new version of Oracle you intend to install); you might find that there is some
form of data divergence due to a bug that was either in the old system or in the
new system. You might also find some significant performance issues that need to
be addressed before you go into production. The potential number of problems
you might find is significant, and anyone would agree that finding them before
you move into production is a worthwhile result. The end result, then, is that
when you move these changes to production, you will be confident in the success
of those changes.

Of course, this begs an important issue of the configuration of the test system to
be used for Database Replay. If your test system diverges from your production
system in any meaningful way, then the reliability of the resulting testing will be
questionable. It is therefore important to ensure that the test environments mimic the
production environments as closely as possible.

Database Replay—Overview
Oracle has added a new shadow capture process that records the transactions
occurring on the database into log files. All database-related requests are captured
by this shadow processing in a way that has a minimal impact on the database
(Oracle reports that the TCP overhead is ~4.5 percent). Each session requires 64k of
additional overhead during flashback workload capture. Additional disk space is
also required for the shadow files, and this should be located on a different set of
physical disks than your database disks to ensure that the resulting disk IO does not
impact the database disks.

If you are running on RAC, you will have a separate shadow recording process
and shadow files on each node of the cluster. During replay these separate files will
need to be relocated on shared drives so all nodes will have access to them.

152 Oracle Database 11g New Features

After the workload is captured, it will need to be preprocessed before it can be
used for replay. This preprocessing is a one-time action. It must occur on a database
that is the same version as the database that captured the workload, but it can be
performed on any Oracle database of the same version.

During replay, replay clients are used to consume the workload recording from
the shadow files and replay the workload on the database. To the database, the
replay clients look like normal external clients making requests to the database. The
overall architecture of Database Replay can be seen in Figure 5-1.

Database Replay Workload Support and Limitations
Database Replay supports most common workloads. This includes:

 ■ All SQL operations including most with binds

All long object (LOB) operations ■

...

Capture Workload

ORACLE

Process Process Process

App ServerApp ServerApp Server

Captured
Workload

Can use Snapshot Standby as
the test system.

Pre-Change Production System

Client
Client Client

...

Replay
Driver

Replay
Driver

...

The Big Picture

Post-Change Test System

Backup

...
Process Process Process

...

ORACLE

ORACLE

FIGURE 5-1. Graphic of Database Replay

Chapter 5: Oracle Database Change Management 153

Local transactions ■

Login and logoff ■

Session switching ■

Some PL/SQL remote procedure calls ■

The following operations are not supported:

 ■ Direct path load operations

Oracle call-level interface (OCI)-based object navigation and REF binds ■

Streams and non-PL/SQL-based Advanced Querying (AQ) ■

Distributed transactions ■

Flashback operations ■

Shared server operations ■

Database Replay—Capture Workload
The first step in replaying a workload is to actually capture the workload you want
to replay. Kind of makes sense, doesn’t it? In this section we will discuss preparing
to capture the workload and then actually capturing the workload. You can use
OEM or manual means to start workload capture. We will finish off this section with
additional information on workload capture, such as how to remove captures from
the system, and we will discuss data dictionary views that you can use to manage
workload capture.

Database Replay—Capture Workload Setup
When planning for the workload capture, ensure that you have sufficient disk space
for the captured workload. You will need to make sure that the directories that will
be used are accessible by the Oracle owning account. The account that is used to
manage the workload capture is known as the recording user. The account used to
manage the replay of the captured workload is called the replay user. Each of these
user accounts should have SYSDBA privileges. This is because these accounts may
need to shut down the database as a part of the capture or replay processes.

You will want to back up your database (or set a restore point if you want to use
Flashback Database) before the capture process begins so that you can restore this
backup to the test system. During the database replay, you will need to be able to
restore the test system to the SCN where the workload capture started. I recommend
that you use RMAN for your backup and recovery operations.

154 Oracle Database 11g New Features

Another thing to consider is whether you will want to recycle your database
before starting the capture process. Why would you want to recycle the database,
you ask? Problems with Database Replay can occur if you start workload capture in
the middle of an in-flight transaction that has certain dependencies. For example, if
the in-flight transaction has added a parent record, after which you start workload
capture, and then the transaction attempts to add a child record, guess what
happens during replay? The replay process will try to add the child record and an
error will be recorded. Since this is an in-flight (incomplete) transaction, the backup
will not restore the parent record. This ultimately will lead to data divergence,
which is not what you want to see happen in your testing.

If you know your workload and you know that in-flight transactions will not be a
problem, then you will not need to shut down your database. If you can’t control your
transactions and in-flight transactions are a possibility, then you will need to shut
down your database. Of course, this may not be possible in a 24/7/365 production
environment. In such cases, you will just need to be aware of the possibility and
impact of in-flight transactions and be prepared to deal with them when analyzing the
replay results.

One other setup note is that you will want to create a directory within Oracle to
assign to the capture processes. This is done with the create directory command
from the SQL prompt. The capture process will put all capture-related files in this
directory.

To summarize the steps to preparing for workload setup:

 1. Make sure the database is in ARCHIVELOG mode and back it up.

 2. Ensure there is enough disk space for the shadow logs to hold the captured
workload.

 3. Determine whether you need to recycle the database.

NOTE
Depending on how much you use the capture
process, you will probably want to create a new
directory for each use. I recommend that you use a
smart naming convention on your directories that
includes the date of the capture. This will help you
manage these directories over time.

Database Replay—Capture the Workload
Workload capture can be accomplished through OEM or manually. In the following
sections we will look at managing workload capture via OEM and then we will
address management of workload capture via manual means.

Chapter 5: Oracle Database Change Management 155

The Workload Capture Shadow Files The workload capture process creates files
as it captures the workload. These files are stored in an Oracle directory that you
first create with the create directory SQL command. On the OSes on which I tested,
various files were created including:

 ■ A wcr_rec* file with a .start extension.

A wcr_capture.wmd file. ■

Various wcr_(transaction_id}.rec files. It appears that there is one file each ■
per transaction.

During my testing I did a create table as select (CTAS) operation on a table that
had 800k rows and an average row length of 23, and the resulting shadow file for
that transaction was a bit over 3k. I also did some timing tests. During workload
capture the CTAS operation took 10 seconds; with workload capture turned off, the
CTAS operation took 7 seconds, so there was about a 30 percent impact on that test.
Of course, your results might be different (and probably will be, since my test
system was not all that fast, nor did it have lots of memory allocated to it).

Workload Capture with OEM Oracle Database 11g OEM has support for workload
capture and replay. To navigate to the proper page from the OEM home page, click
on the Software and Support tab. From there you will find a link to Database Replay
under the Software Assurance section of the page. On this page, seen in Figure 5-2,
you will find the Database Replay workflow listed (Capture, Preprocess, and Reply)
and an option to execute each of these tasks. In our case, we will click on the Capture
Workload link. This takes us to the first page with the workflow to implement
workload capture, as seen in Figure 5-3.

You will need to complete each step and acknowledge its completion before
you can proceed to the next step. We have listed these steps in the previous section,
“Database Replay—Capture Workload Setup”.

After clicking on Next, we find ourselves on the OEM Capture Workload Options
page. The following step allows you to configure options for the workload capture
process. First, you can define whether you do or do not want to restart the database
prior to the start of the capture process. Second, you can apply workload filters to the
capture process. With filters you can choose to exclude a workload based on session
attributes such as a given user. This is very handy if you have a utility database with
many schemas in it, and only one schema is undergoing changes that might impact
the database. You can then exclude the other schemas to reduce the size of the
shadow capture files. Figure 5-4 provides an example of the OEM Capture Workload
Options page on OEM.

NOTE
Oracle’s recommendation is to restart the database
to minimize data divergence during replay.

156 Oracle Database 11g New Features

The next page is the Capture Workload: Parameters page. It is here that we can
set various parameters for workload capture including the name of the capture
process. We can also select the Oracle directory from a drop-down list; this is a
directory (defined in Oracle via the create directory command and visible in the
DBA_DIRECTORIES view) in which the shadow capture files will be created. If we
opted to shut down the database, then we are given various shutdown options
(abort, immediate, or transactional). You can also choose to restart the database
with the default initialization parameter file, or you can use a different parameter
file if you wish. Figure 5-5 provides an example of the Capture Workload
Parameters page.

Clicking Next takes us to the Capture Workload: Schedule page. This simply allows
us to schedule when we want to start the workload capture process. Typically this will
be immediately, but you can do it on a scheduled basis. Note that this page requires
that you enter both the host credentials (the Oracle account user ID on the OS) and the
database account credentials (with SYSDBA privileges) in order to schedule the job.
Figure 5-6 provides an example of the Capture Workload Schedule page.

FIGURE 5-2. OEM Database Replay page

Chapter 5: Oracle Database Change Management 157

Now it’s time to run this baby! We click on Next and we find the Capture
Workload: Review page. This page provides a summary of the actions to be taken
and allows you to begin the workload capture process by selecting the Next button.
Simply click on Next and the workload capture process should fire right off! If you
opted to restart the database, OEM will ask you if you are sure you want to restart
the database and it will proceed to do so. Figure 5-7 provides an example of the
Capture Workload Review page.

After the database capture process has started (or if you decided to restart the
database, after the shutdown process begins), you will be presented with an
informational page on OEM that instructs you on the next steps to complete.

If you rebooted the system the Oracle will log you back into OEM once the
restart has completed. Having started the workload (and optionally rebooting) you
will find yourself at the View Workload Capture page ready to monitor workload
capture. From this page you can view a number of attributes associated with the
workload capture process that is running, including how long it has been running,
the average number of active sessions, and the number of errors that have occurred.
Figure 5-8 provides a screenshot of the View Workload Capture page.

FIGURE 5-3. Capture Workload main page

158 Oracle Database 11g New Features

Clicking on the OK button on this page will return you to the Database Replay
workflow page. From this page you can view the active capture process from the
Active Capture and Replay screen seen in Figure 5-9.

You have now successfully started workload capture. We will discuss the next
steps shortly, but first we need to first discuss how to manually enable workload
capture. We will also talk about the various views that you can use to monitor your
workload and discuss some of the underlying things that occur during the capture
process.

Manual Workload Capture To configure and start workload capture, Oracle
Database 11g provides a new PL/SQL supplied procedure, dbms_workload_capture.
To manually start the capture process you will need to

 1. Define and configure any filters you wish to reply.

 2. Start the workload capture.

FIGURE 5-4. Capture Workload Options page

Chapter 5: Oracle Database Change Management 159

Filters allow you to control what the workload capture process captures. The
dbms_workload_capture.add_filter procedure is used to add various filters to the
capture process. In our example, we are going to create a filter called CAPTURE_
FILTER. We will define in this filter in such a way as to capture only the user called
SCOTT:

BEGIN
 DBMS_WORKLOAD_CAPTURE.ADD_FILTER (fname => 'capture_filter',
 fattribute => 'USER',
 fvalue => 'SCOTT');
END;
/

Valid filter attributes (fattribute) include program, module, action, service,
instance_number, and user. Note that the attribute needs to be in single quotes.

If you need to remove a filter, simply use the dbms_workload_capture.delete_
filter supplied PL/SQL procedure as shown here:

EXEC DBMS_WORKLOAD_CAPTURE.DELETE_FILTER (fname => 'capture_filter');

FIGURE 5-5. Capture Workload Parameters page

160 Oracle Database 11g New Features

Now that you have created (or deleted) your filters, you are ready to start your
workload capture. To start the workload capture, use the dbms_workload_
capture.start_capture supplied PL/SQL procedure. When calling this procedure,
you will give the capture process a name, and you will define the directory to be
used (again, this directory is created with the SQL create directory command) and
the duration of the capture. Here is an example of a call to start our capture process,
which we will call Pre_Upgrade_capture_070107_01. We use the MY_CAPTURE
directory, which we will have already created, and the duration of this capture will
be 1200 seconds. If we did not define the duration parameter, then capture would
continue until we stopped it manually. Here is our start_capture command:

BEGIN
 DBMS_WORKLOAD_CAPTURE.START_CAPTURE (name => 'Pre_Upgrade_Capture_092507_01',
 dir => 'Workload_Capture', duration => 1200);
END;
/

FIGURE 5-6. Capture Workload Schedule page

Chapter 5: Oracle Database Change Management 161

NOTE
Naming conventions including the date and even
the time (or a sequence number) are always a good
idea when using Database Capture.

Once the start_capture procedure is successful, Oracle will return you to the
SQL prompt. Other parameters available for use with the start_capture procedure
are the default_action and auto_unrestrict parameters. The default_action parameter
allows you to define whether filters defined earlier are considered INCLUDE (the
default) or EXCLUDE filters. Note that all filters that you define will be applied to any
capture process. The auto_unrestrict parameter will cause the capture process to
take the database out of restricted mode if set to TRUE. Often during capture you will
want to shut down and start up the database in restricted mode to ensure that the
capture process is not capturing any in-flight transactions. Restarting the database in
restricted session and setting the auto_unrestrict parameter to TRUE allows the
capture process to start at a known state. The default for this parameter is TRUE.

FIGURE 5-7. Capture Workload Review page

162 Oracle Database 11g New Features

You can monitor the capture process by querying the DBA_WORKLOAD_
CAPTURES view, as seen in this example:

select id, name, status from dba_workload_captures;
 ID NAME STATUS
---------- ------------------------------ -------------------------
 12 Pre_Upgrade_Capture_092507_01 IN PROGRESS

Database Replay—Stop Workload Capture
When you are done capturing the workload, you will want to stop the capture process.
In this section we will discuss how you stop the capture process. First we will look at
stopping the capture process using OEM. We will then look at how to stop the capture
process if you are doing a manual database capture.

FIGURE 5-8. View Workload Capture page

Chapter 5: Oracle Database Change Management 163

The OEM Method to Stop Workload Capture You can stop the workload capture
by clicking on the Stop button on the OEM Database Replay page; or, from the
detail page associated with the workload capture, click the Stop Capture button.
Shutting down the database will also serve to stop workload capture.

The Manual Method to Stop Workload Capture You can use the dbms_workload_
capture.finish_capture procedure to stop workload capture. Here is an example of
stopping the workload capture process:

Exec dbms_workload_capture.finish_capture;

By default, the finish_capture procedure will wait 30 seconds and then shut
down the capture process. An optional timeout parameter allows you to define a
shorter or longer timeout. You could use this if you need to shut down some
processes before the capture process terminates. Another parameter called reason
lets you define the reason you are stopping the capture process.

FIGURE 5-9. OEM Database Replay Workflow – Active Capture and Replay page

164 Oracle Database 11g New Features

NOTE
In some cases I would terminate the capture process
(or if an error occurred and it self-terminated). In
some of these cases, I tried to restart the capture job
only to find that there was a job in the scheduler
called WRR$_AUTO_STOP_CAPTURE_nn. This job
is used to automatically stop the capture process
once it is started. I found that you have to wait until
this job is executed from the scheduler, or remove it
manually, before you can restart the capture process.
You will also need to clear the directory of any files
before you can restart the capture process.

Database Replay—Delete a Capture
Of course you will want to remove captures from time to time. This section
discusses how to remove metadata related to workload capture from the Oracle
Database. First we will talk about removing capture workload information using
OEM, and then we will discuss manually removing workload capture metadata.

The OEM Method to Delete a Workload Capture You can delete a workload
capture by clicking on the View Workload Capture History link in OEM from the
main Database Replay home page. From here you can view existing workload
captures and choose to delete them.

The Manual Method to Delete a Workload Capture To delete a workload
capture completely from the capture site, use the PL/SQL supplied procedure
dbms_workload_capture.delete_capture_info. This will remove all capture-related
information from the database. This will not remove physical files created during the
capture process; you will need to perform this action.

To delete the workload, you will need to get the CAPTURE_ID of the capture
process from the DBA_WORKLOAD_CAPTURES table. Once you have gotten the
CAPTURE_ID, you call the procedure as seen here:

-- Get the ID and name of the captures
select id, name from dba_workload_captures;
 ID NAME
---------- --
 1 CAPTURE-orcl-20070919230159
-- Remove capture ID 1
exec dbms_workload_capture.delete_capture_info(1);
PL/SQL procedure successfully completed.

Chapter 5: Oracle Database Change Management 165

Database Replay—Workload Capture Data Dictionary Views
New data dictionary views are available for use with workload capture. They include:

 ■ DBA_WORKLOAD_CAPTURES Provides information on workload capture
operations, both ongoing and historical. Important information in this view is
the name of the capture process (name) and the starting SCN (START_SCN).

DBA_WORKLOAD_FILTERS ■ This view provides information on the filters
that will be applied to any workload capture process.

Database Replay—PreProcess
the Captured Workload
After you have stopped collection, you will need to preprocess the shadow
collection files. To do so, we start at the Database Replay OEM home page, which
we introduced you to earlier in this section (we will cover the manual steps of this
process later in this section). From the workflow we will select Step 2, with a task
name labeled as preprocess captured workload.

Preprocessing the Workload from OEM
To start the preprocess of our workload shadow files from OEM, we start with the
Database Replay home page. You then select the Preprocess Captured Workload
option from the task list. This will bring up the Preprocess Captured Workload page.
From here, you select the directory object that we chose earlier to store the workload
capture shadow files. Once you select the directory, information about the capture
files contained in that directory is listed. Click on the Preprocess Workload button to
preprocess the capture workload. OEM will confirm that you intend to preprocess
the workload that has been captured. Confirm by following the wizard as it moves
you through scheduling the preprocessing by selecting Next. Figure 5-10 provides an
example of the Preprocess Captured Workload page. Once the job is scheduled,
OEM will return you to the Database Reply OEM page.

NOTE
To check on the overall success of the pre-
processing of the captured workload you will need
to go to the job scheduler page in OEM and click
on the pre-process job to see the details of that job
execution. The Preprocess job may fail, but you will
receive no notification of that failure unless you
check the status of that job.

166 Oracle Database 11g New Features

Manual Workload Preprocessing
To preprocess the workload manually you use the PL/SQL procedure
dbms_workload_replay.process_capture. Use the capture_dir parameter to
indicate the directory that your workload capture shadow files were created in,
as seen in this example:

BEGIN
 DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE (capture_dir => 'MY_CAPTURE');
END;
/

The result of the process_capture procedure will be additional files in the
MY_CAPTURE directory. These include:

 ■ A WCR_CONN_DATA.EXTB file

A wcr_login.pp file ■

FIGURE 5-10. OEM Preprocess Captured Workload

Chapter 5: Oracle Database Change Management 167

A wcr_process.wmd file ■

A WCR_SCN_ORDER.EXTB file ■

A WCR_SEQ_DATA.EXTB file ■

Database Replay—Workload Capture History
You can report on existing captures and their status from OEM and by producing a
manual report. In this section we will first look at how to generate the report from
OEM and then we will look at how to manually generate a report on a workload
capture from the SQL*Plus command line.

Generate a Workload Capture History Report via OEM You can view the history
of workload captures from OEM. From the Database Replay home page on OEM,
click on the View Workload Capture History link. This will take you to the the OEM
View Workload Capture History page seen in Figure 5-11.

From this page, you will find links to the various captures stored in the Oracle
Database. You can click on an individual capture for more detailed information on
that capture. Additionally, when you click on the individual capture, you can
produce a Workload Capture report that will provide statistical information captured
during the workload capture.

FIGURE 5-11. OEM View Workload Capture History page

168 Oracle Database 11g New Features

Generate a Workload Capture Report Manually The Workload Capture Report
produced by OEM can also be replicated manually. To generate the report you use
the get_capture_info and report functions in the dbms_workload_capture PL/SQL
package, and then display the output, as seen in this example:

DECLARE

 cap_id NUMBER;

 cap_rpt CLOB;

BEGIN

 cap_id := DBMS_WORKLOAD_CAPTURE.GET_CAPTURE_INFO(dir => 'Workload_Capture');

 cap_rpt := DBMS_WORKLOAD_CAPTURE.REPORT(capture_id => cap_id,

 format => 'TEXT');

 dbms_output.put_line(cap_rpt);

END;

/

The output of the Workload Capture Report can give you an idea if the workload
you have captured represents the workload you want to use in your replay testing.

Database Replay—Replay Workload
Ok, time to make the doughnuts. It’s time to actually replay our workload,
simulating what happened on our database at some time in the past. In this section
we will discuss setting up for database replay, the different options available during
replay, and then we will hold our breath as we fire up this monster and watch it
actually replay our database transactions!

Database Replay—Set Up the Replay Database
Once the workload has been captured and preprocessed, we can prepare the test
database to replay it. First we need to re-create the test database, restoring it to
the SCN where the capture process was started. This SCN is listed in the
DBA_WORKLOAD_CAPTURES view, as seen in this example:

select name, start_scn from dba_workload_captures;

NAME START_SCN
------------------------------ ----------
Pre_Upgrade_Capture_070107_01 7445674

NOTE
Restoring the database to the SCN listed in
DBA_WORKLOAD_CAPTURES is not technically
required, but it makes sense so you can mimic the
production database as closely as possible.

Chapter 5: Oracle Database Change Management 169

You can use any accepted database restore method to create the replay
database. RMAN, Data Pump, or manual backup and recovery methods are all
acceptable. In our case, we would probably use Active Database Duplication,
which is RMAN’s new ability to duplicate databases live, over the network, without
a backup. See Chapter 3 for more on this exciting new RMAN feature. Here is an
example of the command we used to create our replay database:

DUPLICATE TARGET DATABASE TO auxdb FROM ACTIVE DATABASE
UNTIL SCN 7445675
SPFILE NOFILENAMECHECK;

NOTE
You may need to do a log switch and wait for the
redo log to be archived before your point-in-time
duplication will be successful.

Once you have restored the test database, you will want to protect it from any
inadvertent changes. You may want to leave the database in restricted mode until
you are ready to start the replay operations, and you might want to disable any
automated jobs that might make changes within the database. Also, to reduce data
divergence, Oracle recommends (but does not require) that you reset the system
clock just before you start Database Replay to the time/date where the workload
capture was started.

Database Replay—Consider Replay Options
There are three different options to consider when performing Database Replay:

 ■ Synchronization mode

Connection time scale ■

Think time scale ■

You will set these options before you begin the Database Replay. They are set via
OEM or via a call to the dbms_workload_replay.prepare_replay PL/SQL supplied
procedure. Together these options control the overall time it will take to complete a
database replay. If the defaults are left as is, on two systems that are completely
identical, the run times of the Replay should equate to the run time of the capture
process. Let’s look at each of these options in a bit more detail.

Synchronization Mode You can use this option to disable SCN-based synchronization
of the replay. When SCN-based synchronization is enabled (true), then the commit
order of the transactions within the workload being replayed will be preserved.

170 Oracle Database 11g New Features

When you disable synchronization, then transactions will be replayed without
synchronization, and data divergence may occur. This attribute is supported by the
synchronization parameter and can be true or false. true is the default value.

Connection Time Scale You can use the connection time scale to manage the
timeframe between the start of the replay and when each session connection is
made, contrasted to the timeframe of the start of the workload capture and the
connection. Thus, you can scale up the work volume slower or faster as your testing
dictates. This attribute is supported by the connect_time_scale parameter, which
defaults to a value of 100. This number is represented as a percentage of the time
between each connection experienced by the capture process. Thus, if this number
is set to 50, the time between the start of the replay and the first user connection
would be slowed by 50 percent.

Think Time Scale The think time scale attribute represents the adjustment of user
think time during Database Replay. Adjust the think time as required to manage the
correct think time between database calls during Database Replay. This attribute is
supported by the think_time_scale parameter, which defaults to 100 percent. This
number is represented as a percentage of the think time experienced by the capture
process. Thus, if this number is set to 50, the time between the start of the replay
and the first user connection would be slowed by 50 percent.

An optional related parameter, think_time_auto_correct, will adjust the think
time between transactions, should a transaction run longer during replay. For
example, assume that a transaction takes 30 seconds on the capture system with a
think time between that and the next transaction of 10 seconds (so 40 seconds total
elapsed). If the same transaction on the replay system takes 33 seconds on the
capture system, the adjusted think time would be 7 seconds so as to maintain the
integrity of the overall think time of the replay process.

Database Replay—Stage for Database Replay
In this section we will discuss preparing for Database Replay. In this section we will
discuss:

 ■ Moving the capture files to the replay system

Using flashback database/standby database ■

Move the Capture Files to the Replay System Prior to being able to run Database
Replay you will first need to configure the directory for the database replay files
created when you performed your database capture. You will then need to move
the preprocessed files (we discussed preprocessing earlier in this chapter) in the
capture directory on the host system to the replay directory on the test system.

Chapter 5: Oracle Database Change Management 171

Just as with the capture system, you will need to create a directory in the replay
system with the create directory command.

Consider Using Flashback Database/Standby Database Another recommendation
that I have for you relates to the use of Oracle Database’s flashback technologies.
I would recommend that you configure flashback database on the replay system and
then set a guaranteed restore point immediately before you start your database
replay. This will allow you to flashback the database after you execute a replay
operation, allowing you to execute the replay many times. You can also use a
snapshot standby database (see Chapter 3 for more on snapshot databases) for this
kind of operation if you like. This allows you to use the database as a standby
database once your testing is complete. When using a snapshot standby database,
you don’t need to worry about setting the restore point, because you simply revert
the database to the original standby configuration.

Deal with External References External references such as database links, external
tables, and the like need to be addressed on the test system. Of course, many sites
have rules that disallow production database links on test systems. For example, if
you have a database link on your production system, that same database link name
needs to be present on the test system. For security purposes, though, that link might
point to a completely different distributed system. If the links do point to different
systems, you need to make sure the data on those systems properly represents the
data form and structure on the source system that the original database link pointed
to. Any data divergence on remote systems can result in errors during replay
operations.

You can use the dbms_workload_replay.remap_connection PL/SQL supplied
procedure to remap any external databases that might be required during workload
replay. The DBA_WORKLOAD_CONNECTION_MAP view on the capture system
will be helpful in providing a list of external connections that were used during the
workload capture.

Execute Database Replay—OEM
At this point, the OEM and manual database replay processes diverge. First we will
address replaying the workload from OEM, and then we will look at manual
database replay. We start the OEM replay from the Database Replay Home Page
that we have already introduced you to. Here you will find that Step 3 on the
database replay workflow is titled Replay Workload. Click on the Go to Task button
to proceed with replaying the workload.

Next we see the OEM ReplayWorkload page. This page prompts you for the
directory object that contains the workload you wish to process. Select the directory
that the workload is contained in, and the page will update with a summary of the
capture that is contained in that directory as seen in Figure 5-12. You can review

172 Oracle Database 11g New Features

the capture summary and details to ensure that this is the capture you wish to replay.
If so, click on the Set Up Replay button to continue.

The next page contains a list of actions that you will need to take before you can
execute the replay. With the exception of the setup of the database clients, we have
covered these items earlier, but to summarize they are

 1. Restore the database for replay.

 2. Perform any system changes that you wish to test (parameter changes,
software changes, and so on).

 3. Resolve any references to external systems (for example, database links).

 4. Set up the replay clients; these should already be installed when you install
the database software. So there should be no initial setup required.

Once all these steps are completed, then you may click on Continue to proceed
to the next page.

The next page provides the opportunity for you to review any external system
references such as database links and directory objects. You should have already
dealt with these issues, and therefore you should be able to click on Continue to
move past this page.

FIGURE 5-12. OEM View Workload Capture History page

Chapter 5: Oracle Database Change Management 173

Next we have the Replay Workload Choose Initial Options page. This page
allows you to choose the initial options with regards to replay. Truthfully, there are
not many options to pick from on this page, and typically you will just click on Next
to proceed to the next page.

You will now find yourself on the Replay Workload Customize Options page.
Here you review the connection strings found in the workload. You should review
these and make sure you have mapped them correctly. You can also review the
different replay parameters (discussed earlier in this chapter) such as synchronization,
connect_time_scale, and think_time_scale. Click on Next to continue to the next page.

The Prepare Replay Clients page is the next page and it indicates that we are
ready to start the replay process. This is the last stop, your last opportunity to make
sure everything is setup correctly. Verify everything is ready, and click on Next and
hold your breath.

As the reply is scheduled, we are taken to the Wait for Client Connections page.
It is now time to start the workload clients. See the next section, titled “The Replay
Clients,” for details on this operation. OEM will detect that the replay clients have
been started. It will list each of the clients that it detects has been started, and the
page refreshes quite frequently. Once all the clients have been started, click on
Next. Note that even after replay has started, you can start additional replay clients
if you choose. Figure 5-13 shows an example of the Replay Workload: Wait for
Client Connections Page indicating that a replay client has started.

FIGURE 5-13. OEM View Workload Capture History page

174 Oracle Database 11g New Features

NOTE
Replay will not start just because you have started
the replay clients.

The next page is the replay workload review, which really is your last gasp,
make-sure-I’m-doing-the-right-thing page. This page reviews the capture information
that you are about to replay one more time. An example is seen in Figure 5-14.

Click on Submit to execute the capture process and be prepared to be amazed!
Figure 5-15 provides an example of the View Workload Replay page.

This page provides information on the progress of the workload replay, such as
the total duration of the replay and how far into the replay you are. You can stop the
replay if you choose, monitor its progress, get information on errors, and so on. The
page refreshes every 60 seconds during the replay process or you can refresh it
more frequently.

Once the workload has completed, the workload clients will automatically stop
and the status line on the page will indicate that the workload replay has completed.
You can then review the replay report (we discuss this report later in this section) for
errors and other information.

FIGURE 5-14. OEM View Workload Capture History page

Chapter 5: Oracle Database Change Management 175

The Replay Clients
The replay clients are started from the command line by starting the wrc executable.
There is no OEM interface available to start the clients for you. To start the clients,
you start a command-line session and set the Oracle environment as appropriate for
your operating system. You can either change to the directory where the replay files
are contained, or you can define the location of that directory using the replaydir
parameter. Here is an example of the startup of the wrc executable:

C:\oracle\product\admin\rob11gr4\test_dir>wrc mode=replay
userid=system password=Robert

In your testing you may want to have a number of replay clients, depending on
the workload of the system and the level of concurrency.

The wrc executable comes with a number of options. First it comes with three
modes:

 ■ Replay (Default) Causes the replay client to replay the workload.

Calibrate ■ Used to estimate the number of replay clients and CPUs that
will be needed to replay the workload. The following code listing provides

FIGURE 5-15. OEM View Workload Capture History page

176 Oracle Database 11g New Features

an example of using the calibrate mode to determine how many wrc clients
you will need to run. In this case we just need one:

[oracle@localhost ~]$ wrc mode=calibrate replaydir=/oracle01/capture
Workload Replay Client: Release 11.1.0.6.0 -
Production on Thu Sep 20 19:39:12 2 007
Copyright (c) 1982, 2007, Oracle. All rights reserved.

Report for Workload in: /oracle01/capture

Recommendation:
Consider using at least 1 clients divided among 1 CPU(s).
Workload Characteristics:
- max concurrency: 1 sessions
- total number of sessions: 1
Assumptions:
- 1 client process per 50 concurrent sessions
- 4 client process per CPU
- think time scale = 100
- connect time scale = 100
- synchronization = TRUE

List_hosts ■ Lists the hosts that were used during the capture or the replay.

There are also a number of different keywords that you can use when calling wrc.
These keywords define various attributes associated with that execution of wrc such
as the username, the password, and the replay directory. You can see a list of all the
valid keywords for the various modes that wrc operates in by typing in wrc –help.

Execute Database Replay—Manual
We will now address replaying the workload manually. First we will look at manually
initializing the replay data. This is required if you are moving the workload to another
system. We will then prepare the database for replay and then we will finally start the
replay process.

Initialize the Replay Data Once you have moved the workload capture files to the
replay system, you will need to initialize those files. To do this, log in to the
database and use the PL/SQL stored procedure dbms_workload_replay.initialize_
replay to initialize the workload in the database. Here is an example:

BEGIN
 DBMS_WORKLOAD_REPLAY.INITIALIZE_REPLAY (
 replay_name => 'Pre_Upgrade_Capture_070107_01',
 replay_dir => 'MY_REPLAY_DIR');
END;
/

Chapter 5: Oracle Database Change Management 177

One of the things that this procedure does is populate the DBA view
dba_workload_replays. There may be cases where you will need to remove a replay
record from the system. You can use the dbms_workload_replay.delete_replay_info
procedure to perform this action, as seen in this example:

select id, name from dba_workload_replays;
 ID NAME
---------- --
 3 REPLAY-rob11gr4-20070712204202

SQL> exec dbms_workload_replay.delete_replay_info(3);

Prepare for Database Replay Having initialized the workload and mapped
any external connections (we discuss remapping connections earlier in this
chapter), we are ready to prepare for the replay operation. For this we use the
dbms_workload_replay.prepare_replay PL/SQL procedure. It is here that we
determine the various replay options discussed earlier (such as synchronization)
that will be used. We pass in the various options that we want to utilize and Oracle
will prepare the workload for replay. Here is an example where we set the
synchronization parameter to false:

BEGIN
 DBMS_WORKLOAD_REPLAY.PREPARE_REPLAY (
 synchronization=>FALSE);
END;
/

In this example we have accepted the defaults for the remaining parameters,
connect_time_scale, think_time_scale, and think_time_auto_correct. We are now
ready to start the workload replay!

Initiate Database Replay After all this work, it’s almost anticlimactic to start the
replay. First, you will need to start one or more wrc replay clients (discussed earlier
in this chapter) and then you simply use the PL/SQL procedure dbms_workload_
replay.start_replay to begin the workload replay, as seen in this example:

Exec dbms_workload_replay.start_replay;

Oracle will start the replay process. Once replay has started, the call to the
start_replay procedure will complete and you will be returned to the SQL prompt to
monitor the replay operation. When the workload replay is complete, the replay
clients will disconnect.

178 Oracle Database 11g New Features

Monitoring Replay You can monitor the replay process using the following views:

 ■ dba_workload_replays

dba_workload_replay_divergence ■

v$workload_replay_thread ■

Stop Workload Replay Again, a somewhat anticlimactic procedure, dbms_workload_
replay.cancel, is used to cancel workload replay, as seen in this example:

Exec dbms_workload_replay.cancel_replay;

Arup Says…
Thank you very much, Robert, for showing how to use the manual, command-
line way as well as the OEM path. When OEM provides such a nice interface to
execute database capture and replay, why should we consider the command-
line path?

The most obvious reason may be that some of us eschew the idea of running
a GUI tool. As trivial as it may sound, it may actually be true in some cases. In
OEM, there are two flavors—the Database Control (or DB Control), the one that
comes with the database software and runs on the database server as a web
browser; and Grid Control, the one that you install centrally communicating to
all databases via agents. In the latter case, the web browser runs on the server
separate from the database server. In many production databases, it may be
unacceptable to run a web server on the same server as the database. Grid
Control is acceptable in that case, but DB Control, which runs on the same
server as the database, is not. Grid Control is always behind schedule on Oracle
databases. So, it might be a while before it appears for Oracle 11g, and so you
may not have the OEM for the production database until that time. In that case
your options are limited to the command line.

Second, you may want to automate the process via a script that makes the
parameter change, runs the replay, and iterates it several times. So, thank you,
Robert, for showing how to use this feature by command line.

Arup Says…
Although Oracle suggests that you replay the workload on a different database,
there is no technical restriction on doing so. You can replay the workload on the
same database where it was captured. In many cases, that may prove very useful,
if you can find the outage for the duration of the test. For example, suppose you

Chapter 5: Oracle Database Change Management 179

are assessing the impact of changing parameters on the test system; it will be an
apple-to-apple comparison if you capture and replay the workload on the same
test database. All you have to do is set a restore point prior to the replay, and then
flashback to that restore point after the replay. Take a snapshot before and after
each replay so that you can compare the effects. Your tasks will be somewhat
like this:

 1. Capture workload. This will create a set of two AWR snapshots.

 2. Preprocess the captured files.

 3. Create a restore point:

SQL> create restore point pre_replay;

 4. Change parameters or other variables as needed.

 5. Start replay. This will create a set of two AWR snapshots.

 6. Flashback database to the restore point (of course, your database
should be configured for flashback operations!):

SQL> shutdown immediate
SQL> startup mount
SQL> flashback database to restore point pre_replay;
SQL> alter database open resetlogs;

 7. Repeat Steps 4 through 6 as many times you want. Now, using OEM or
the command line, generate a period comparison report between the
snapshots collected in different iterations. That will tell you how each
run impacted the database.

Another use case may be the choice of the standby database. Suppose you
are planning to migrate to a new environment. You can leverage the Database
Replay and the snapshot standby features to get to the best configuration. The
steps will be roughly as follows:

 1. Create a snapshot standby on the new environment.

 2. Replay and check results.

 3. Change parameters.

 4. Repeat Steps 2 and 3 until you get the best performance.

 5. When ready, convert the snapshot standby to regular standby and then
activate the standby as primary.

180 Oracle Database 11g New Features

Generate a Workload Replay Report
The Workload Replay Report provides information on the replay process. To generate
the report you use the get_replay_info and report functions in the dbms_workload_
replay PL/SQL package, and then display the output, as seen in this example:

DECLARE
 rep_rpt CLOB;
BEGIN
 rep_id := DBMS_WORKLOAD_REPLAY.GET_REPLAY_INFO(dir => 'Workload_Capture');
 rep_rpt := DBMS_WORKLOAD_REPLAY.REPORT(replay_id => rep_id, format =>
'TEXT');
 dbms_output.put_line(rep_rpt);
END;
/

The output of the Workload Replay Report will provide you with a wealth of
information on the replay session.

Arup Says…
The Database Replay feature in this release, in my opinion, is the best thing
Oracle introduced since partitioning option in Oracle 8, and this alone is worth
upgrading to Oracle 11g. Why is this feature so attractive?

When QA people test the systems or application, what do they do? Hopefully,
they get some sample SQL statements from the shared pool (most likely they
just write them up as they think the code must look, instead of checking it in
the shared pool) and run the statements over and over again using some load
generator tool. This is not an entirely invalid test, but definitely not representative
of the system. When testing for new apps, this may be the only choice because
there is no actual statement to pull from the shared pool; but consider the case
when you want to migrate to a new hardware or move from filesystems to ASM
and want to gauge the impact of the changes. You would want to run exactly the
same statements and in the same format against the database running on the new
system, wouldn’t you? In those cases, the synthetic statements cooked up by QA
testers will just not cut it; you need actual statements as they happened and that’s
what Database Replay delivers. This is also why Oracle calls this feature a part of
a suite called Real Application Testing (RAT). The rather interesting name aside,
RAT allows you to test the changes yourself, without involving the testing group,
to assess the impact of a lot of changes—database parameter changes, changes to
the OS, patch applications, storage changes, hardware changes, and many others.
Changes are inevitable; but with RAT (I really wish they had used a different
name!), it will be possible to predict the changes somewhat more accurately.

Chapter 5: Oracle Database Change Management 181

The SQL Performance Analyzer
If you have done more than a few upgrades of the Oracle database, you might well
have experienced a problem where the execution plans change. This can be a
frustrating part of the upgrade process. Other changes to the Oracle database can
cause execution plans to change too, such as the addition or removal of schema
objects (indexes, materialized views), collection of statistics, changes to the OS such
as upgrades, and hardware changes such as the addition or removal of physical
disks. Oracle Database 10g introduces the SQL Performance Analyzer to deal with
these problems. The SQL Performance Analyzer will analyze a given change and
identify SQL statements impacted by that change and measure the performance
improvement or degradation resulting from that change.

Oracle provides two interfaces to the SQL Performance Analyzer. The first is
through OEM and the second is through PL/SQL using the dbms_sqlpa supplied
package. In the following sections we will review how to use the SQL Performance
Analyzer.

Overview of SQL Performance Analyzer
This is an overview of the steps followed when using the SQL Performance
Analyzer. Some of these steps are automated in OEM, and others you will perform
when doing a manual or OEM analysis. The basic workflow is

 ■ Capture the SQL workload in the form of a SQL Tuning Set.

If you are using a test system, set up the test system and move the SQL ■
tuning set to the test system.

Measure the SQL workload performance before the change. ■

Make the change. ■

Measure the SQL workload performance after the change. ■

Compare the performance results. ■

SQL Performance Analyzer via OEM
OEM provides an easy workflow that will walk you through the use of the SQL
Performance Analyzer. In this section we will provide a quick overview on
accessing the SQL Performance Analyzer through OEM and then discuss the three
workflows that OEM provides to ease the use of the SQL Performance Analyzer:

 ■ The Optimizer Upgrade Simulation workflow

The Parameter Change workflow ■

The Guided workflow ■

182 Oracle Database 11g New Features

Overview of OEM and the SQL Performance Analyzer
OEM provides access to the SQL Performance Analyzer from the software and
support link on the OEM home page. From there simply click on the link to the SQL
Performance Analyzer which is under the Real Application Testing section of the
page. On the SQL Performance Analyzer (see Figure 5-16) page you will find the
three different workflows available for you to choose from (we will discuss these in
more detail in the following sections). These options are:

 ■ Optimizer Upgrade Simulation

Parameter Change ■

Guided Workflow ■

Additionally you can see any existing SQL Performance Analyzer tasks listed on
this page.

The Optimizer Upgrade Simulation OEM Page
If you choose the Optimizer Upgrade Simulation link on the SQL Performance
Analyzer page, you will be taken to the Optimizer Upgrade Simulation page seen
on Figure 5-17. This page will prompt you for information that Oracle will require

FIGURE 5-16. OEM SQL Performance Analyzer page

Chapter 5: Oracle Database Change Management 183

to perform the analysis. Using this function you can test the impacts of your upgrade
from 10g to 11g, and how that upgrade will impact performance.

To perform this test you will need to create a SQL Tuning Set on the 10g system
that is representative of the workload on your system. You will then move that SQL
Tuning Set to the Oracle Database 11g database for analysis. See Chapter 4 for
more on creating SQL Tuning Sets and. Later in this section we discuss Transporting
SQL tuning sets to other databases.

Before you start the test, you will need to define the old optimizer version and
the new optimizer version number that you will be testing in the optimizer version
section. You will also need to determine what metric you wish to use to compare
the two optimizers. By default Execute Elapsed Time is chosen for you, but several
other choices are available. Finally, you can control when the analysis will take
place. When you are ready to schedule the analysis, simply click on Submit and
OEM will take care of the rest for you. OEM will then return you to the SQL
Performance Analyzer home page.

The Parameter Change OEM Page
The Parameter Change OEM Page is much the same as the Optimizer Upgrade
Simulation OEM page, except that you will enter the name of the parameter you
wish to test and the baseline value and the changed value for that parameter (thus,

FIGURE 5-17. OEM Optimizer Upgrade Simulation page

184 Oracle Database 11g New Features

you can baseline against a parameter that is configured differently than in your own
system).

NOTE
The list of parameters to be tested only includes
certain dynamic parameters. Some dynamic
parameters, such as sga_target, cannot be tested.

The Guided Workflow
The guided workflow allows you to perform the SQL performance analysis, while
maintaining some manual control over the process. This might be required, for
example, if you need to shut down and restart the database as a part of your testing,
as might be the case if you are testing nondynamic parameter setting changes. The
guided workflow gives you individual steps to follow as you proceed through the
SQL performance analysis process.

An Example and the Results
Let’s look at a quick example. We will test the impacts of a parameter change on a
givent SQL Tuning Set. From the SQL Performance Analyzer OEM Page (Figure 5-16)
we select the Parameter Change link. On the top portion of the Parameter Change
OEM Page (Figure 5-18) you can see that I’ve given the SQL Performance Analyzer

FIGURE 5-18. Example OEM Parameter Change page (top half)

Chapter 5: Oracle Database Change Management 185

task a name of Roberts_Test. I’ve assigned the SQL Tuning set SYS.TEST_SQL_
TUNING_SET to the task, along with a description. I’ve left the Per-SQL Time Limit
set to unlimited. I could set it to EXPLAIN_ONLY and just generate execution plans
to compare. By default the SQL Performance Analyzer will compare both execution
times and plans.

In Figure 5-19 we see the bottom half of the Parameter Change OEM Page. Here
we define the parameter (just one) we want to test the change on. In our case, we
have chosen to determine the impact that changing db_file_multiblock_read_count
from 14 to 32 will have on our SQL Tuning Set. We also set the evaluation metric.
The default is elapsed time, but we can choose from a number of different metrics
such as CPU Time, Buffer Gets, Disk Reads, Direct Writes, or Optimizer Cost.
Finally we can define when the task should execute (we have selected immediate
execution). We then click on the X button to begin the analysis.

OEM will return us to the SQL Performance Analyzer home page. We will now find
our parameter change task listed in the SQL Performance Analyzer Tasks window as
seen in Figure 5-20. Note that a box in the Last Run Status column indicates that the task
is currently running. This will turn into a checkmark once the task has successfully run.

We can view the results of the analysis from the SQL Performance Analyzer
home page. Simply click on the completed task for which you wish to review
results. From this page, you can click on the task name (in our case ROBERTS_TEST)
to bring more detail on the specific SQL Performance Analyzer Task. Figure 5-21

FIGURE 5-19. Example OEM Parameter Change page (bottom half)

186 Oracle Database 11g New Features

FIGURE 5-20. SQL Performance Analyzer window with task

FIGURE 5-21. SQL Performance Analyzer Task window

Chapter 5: Oracle Database Change Management 187

provides a look at the SQL Performance Analyzer Task Page with details of our
roberts_test task.

From this page we can see details about the task. You can replay the trail if you
wish by clicking on the replay trail button (for example, perhaps you changed some
OS parameter and you want to see if that makes a difference). You can also
compare different trials if you like from the Replay Trial Comparisons region of the
SQL Performance Analyzer Task Page.

You can view the report from the task by clicking on the View Latest Report link at
the top of the page (or click on the icon in the comparison report column in the Replay
Trial Comparisons region of the page). The resulting report, shown in Figure 5-22,
provides a graphical representation of the positive or negative benefits of our test. For
example, in my test, the elapsed time of the second SQL trial (the new parameter
setting) was less than that of the first trial (the old parameter setting). We also see the
number of SQL statements that were improved, regressed or stayed the same. Lower
on the page is a list of the statements that are impacted by the change and if the
impact was positive or negative.

FIGURE 5-22. SQL Performance Analyzer Task page

188 Oracle Database 11g New Features

For additional information on impacted plans, simply click on the improved,
regressed, or unchanged graphs, and you will be taken to a detail screen
highlighting the plans that fit within the given category. Each plan allows you to drill
further down into the individual SQL statements to compare statistics and execution
plans. Also you can run the SQL Tuning Advisor on a specific plan to see if there is
anything that can be done to improve the performance of that plan.

Based on this test, it appears that I should reset db_file_multiblock_read_count
to 32 instead of 16 on my system.

SQL Performance Analyzer via PL/SQL
The following sections address the use of the SQL Performance Analyzer via PL/SQL.
We will cover the following steps:

 ■ Create a SQL Tuning Set with the correct workload.

Transport the SQL workload to a test system (optional). ■

Configure the baseline environment. ■

Execute the SQL Performance Analyzer task. ■

Make the change. ■

Execute the SQL Performance Analyzer task. ■

Compare the results. ■

NOTE
The SQL Performance Analyzer can be used cross-
platform. So you can use this tool to test your old
hardware against new hardware that you are trying
to decide to buy, or to compare performance among
several hardware vendors.

Create a SQL Tuning Set with the Correct Workload
SQL Performance Analyzer uses SQL Tuning Sets to determine which SQL statements
it should analyze. We discussed the creation of a SQL Tuning Set in Chapter 4. Create
a SQL Tuning Set that contains the SQL statements/workload that might be impacted
by the change you are going to make. In some cases, you may not know all of the
SQL statements that would be impacted, so it’s a good idea to capture a typical
workload for the SQL Performance Analyzer to use.

Chapter 5: Oracle Database Change Management 189

Transport the SQL Workload to a Test System (Optional)
If you will be doing your testing on a system other than the one that you generated
the workload on, then you will need to transport the SQL Tuning Set to that test
system. To do so you will need to follow these steps:

 1. From a user other than the SYS user, create the staging table for the SQL
Tuning Set.

Use the dbms_sqltune.create_stgtab_sqlset procedure to create the staging
table, as seen in this example:

Exec dbms_sqltune.create_stgtab_sqlset(table_name=>'STAGE_TABLE');

 2. Move the SQL Tuning Set into the Staging table.

 Use the dbms_sqltune.pack_stgtab_sqlset procedure to move the tuning set
you created into the staging table. In this example, we have already created
a SQL Tuning Set called MY_SQL_TUNE_SET and we are moving it into
STAGE_TABLE:

begin
 dbms_sqltune.pack_segtab_sqlset(
 sqlset_name=>'MY_SQL_TUNE_SET',
 staging_table_name=>'STAGE_TABLE');
end;
/

 3. Move the table from the source database to the test database.

There are a number of ways to do this. You can use Data Pump to export
and import the table, or you could move the data across a database link if
you prefer.

 4. Unpack the SQL Tuning Set into the test database.

On the test database to which you have moved the table, use the
dbms_sqltune.unpack_stgtab_sqlset procedure to load the SQL Tuning Set
from the table into the test database. In this example we are moving the
MY_SQL_TUNE_SET set into a table called STAGE_TABLE, replacing any
duplicate records:

begin
 dbms_sqltune.unpack_segtab_sqlset(
 sqlset_name=>'MY_SQL_TUNE_SET',
 replace=>TRUE,
 staging_table_name=>'STAGE_TABLE');
end;
/

190 Oracle Database 11g New Features

NOTE
Of course, your test system should replicate the
production system as closely as possible. Even a
small difference between the production system and
the test system can make a difference.

Configure the Baseline Environment
Before you start your first analysis, you may wish to configure your database
differently to represent the baseline. For example, you may wish to configure a
specific database parameter differently before you perform the analysis. For
example, we might change the setting of db_file_multiblock_read_count, as seen in
this example:

Alter system set db_file_multiblock_read_count=32;

Create the SQL Tuning Task
Before we can run the analysis we need to create the SQL Tuning task. This is done
with the dbms_sqltune.create_tuning_task procedure. This task (available in Oracle
Database 10g) has many different options. In this example we will create a tuning
task called MY_PARAMETER_TEST_001, using the SQL Tuning Set we used earlier
called TEST_SQL_TUNING_SET:

Declare
 retval varchar2(200);
begin
 retval:=dbms_sqltune.create_tuning_task(
 sqlset_name=>'TEST_SQL_TUNING_SET',
 sqlset_owner=>'SYS',
 task_name => 'MY_PARAMETER_TEST_001');
end;
/

Execute the SQL Performance Analyzer Task
To start the SQL Performance Analyzer we use the dbms_sqltune.execute_
tuning_task procedure, as seen in this example:

begin
dbms_sqltune.execute_tuning_task(
 task_name => 'MY_PARAMETER_TEST_001',
 execution_name => 'initial_sql_trial');
end;
/
-- check the status of the task to make sure it is completed.
select status from dba_advisor_tasks where task_name = 'MY_PARAMETER_TEST_001';
STATUS

COMPLETED

Chapter 5: Oracle Database Change Management 191

In this example we have created a SQL Performance Analyzer task called
my_parameter_test_001. After the task ran, we checked the dba_advisor_tasks
view to make sure that it was completed.

Reconfigure the Environment
Now we are ready to make our environment change. This might be a change to a
parameter or an addition of an index or some other item of interest. For example,
we might change the setting of db_file_multiblock_read_count, as seen in this
example:

Alter system set db_file_multiblock_read_count=32;

Analyze the Changed Environment
Now that you have made your environmental change(s), we need to rerun the
analysis, as seen in the following example. It’s essentially the same as the previous
analysis run, except that we change the execution_name parameter:

begin

dbms_sqltune.execute_tuning_task(

 task_name => 'MY_PARAMETER_TEST_001',

 execution_name => 'post_change_sql_trial');

end;

/

-- check the status of the task to make sure it is completed.

select status from dba_advisor_tasks where task_name = 'MY_PARAMETER_TEST_001'

and last_execution='post_change_sql_trial';

STATUS

COMPLETED

NOTE
In the initial cut of Oracle Database 11g, we found
these tests to be pretty slow. Be careful when you
execute these tuning tasks, considering the impact
they might have on the system. We fully expect that
as these features mature, performance will be less of
an issue.

In this example, we ran the same tuning task that we ran previously, giving it a
different execution name so we could distinguish the two tasks. We also checked to
make sure the task ran successfully by querying dba_advisor_tasks again.

192 Oracle Database 11g New Features

NOTE
Of course, this feature is not available in Oracle
Database 10g. So, how do you test whether an
upgrade to 11g will have a negative impact on your
SQL statements performance? First you go ahead
and do the upgrade in a test environment. Then you
make sure that the parameter optimizer_features_
enable is set to the version of your Oracle 10g
Database (for example, it might be set to 10.2.0.0)
and run the pre-change analysis with that parameter
set. You can then set optimizer_features_enable to
11.0.0.0 and run the analysis again. Comparing the
results will give you some indication of the positive
or negative impact of your upgrade to Oracle
Database 11g.

Compare the Results
Once the before-and-after analysis has been executed, you need to compare the
results of the before-and-after performance analysis. This is done with the PL/SQL
procedure dbms_sqltune.execute_analysis_task, as seen in this example:

begin

 dbms_sqltune.execute_tuning_task(task_name=>'MY_PARAMETER_TEST_001',

 execution_params=>dbms_advisor.arglist('RANK_MEASURE1',

 'buffer_gets'));

end;

/

In the previous example we started a compare analysis on the MY_PARAMETER_
TEST_001 task. We have indicated with the execution_params parameter that we want
to compare the performance of the two sets of execution data (the rank_measure1
parameter) based on the buffer_gets parameter.

Generate the Analysis Report
After running the comparison, you will want to review the results of the comparison
and determine whether any performance impacts are introduced by the change (and
you hope that the change helps performance). The analysis report can be run using
the PL/SQL supplied procedure dbms_sqlpa.report_analysis_task. In this example,
we have run the summary report for the tuning task. The procedure provides for
varying levels of reporting.

VAR rep CLOB;
EXEC :rep := DBMS_SQLTUNE.REPORT_TUNING_TASK('MY_PARAMETER_TEST_001', -
'text');

Chapter 5: Oracle Database Change Management 193

SET LONG 100000 LONGCHUNKSIZE 100000 LINESIZE 120
PRINT :rep

Data Dictionary Views of Interest
As you use the SQL Performance Analyzer you may have to use a few views
including:

 ■ [DBA|USER]_ADVISOR_EXECUTIONS Provides information on the
executions of the SQL Performance Analyzer

[DBA|USER] ■ _ADVISOR_TASKS Provides information on SQL
Performance Analyzer tasks

[DBA|USER] ■ _ADVISOR_FINDINGS Provides information on the SQL
Performance Analyzer findings

[DBA|USER] ■ _ADVISOR_SQLPLANS Provides a list of all execution plans
associated with the analysis

[DBA|USER] ■ _ADVISOR_SQLSTATS Provides statistics on all the SQL
statements

Arup Says…
The second member of the RAT family (Real Application Testing, as Oracle
calls it; not the rodents)—SQL Performance Analyzer (SPA)—deserves some
special attention. You might be wondering how this is any different from the
Database Replay feature explained earlier in the chapter.

On the surface both do the same things—replay something and compare
the results. But they are different. The first important difference is that SPA
allows you to examine which SQL statements you want to replay. You can even
create your own SQL statements that you have put in the application and replay
them against the database after changing parameters. This is not possible in
Database Replay. The second difference is the mode of execution. SPA
executes the SQL statements sequentially, not concurrently. Therefore you will
see the impact on the SQL statements independently but not the contention
among themselves. Database Replay can play them concurrently and hence
you can see the effect of contention.

Another major difference is the link between SPA and SQL Tuning Optimizer
(STO). You can launch the STO from the SPA page for the SQL statements, check
the recommendations made by STO, and then replay them to see the impact.

194 Oracle Database 11g New Features

End of Line
Change management in Oracle has perhaps been one of the last of the uncharted
frontiers. In Oracle Database 11g Oracle has started to introduce new features that
will help to reduce the overall impacts of change to the database. Be it change as a
result of an upgrade to a new version of the database or a parameter change, we
can now be better prepared to understand the impacts of those changes before we
unleash it out to the community. Being pro-active about change, what a concept!

CHAPTER
6

Oracle Database 11g
Security

195

196 Oracle Database 11g New Features

ecurity has become a prominent theme in many a database these
days, and it’s no wonder. With hackers, terrorists, corporate data theft,
and loss of backup tapes on their way to storage facilities, DBAs need
to watch out for the security of the data in their charge. In this chapter
we will discuss features and enhancements in Oracle Database 11g

including:

 ■ Auditing

Passwords ■

Fine-Grained Access Control (FGAC) ■

Tablespace encryption with Transparent Data Encryption (TDE) ■

Other TDE-related enhancements ■

Oracle SECUREFILE LOBS ■

Auditing
If you create an Oracle database using the Oracle Database Configuration Assistant
in Oracle Database 11g, or if you upgrade a database using the Database Upgrade
Assistant, you will have the option of enabling the Oracle Database 11g auditing
defaults. If you accept the Oracle Database 11g auditing defaults then database
auditing will be enabled for certain database operations. These operations are listed
in the following table:

 S

Alter any procedure Create any job Drop any table

Alter any table Create any library Drop profile

Alter database Create any procedure Drop user

Alter profile Create any table Exempt access policy

Alter system Create external job Grant any object privilege

Alter user Create public database link Grant any privilege

Audit role by access Create session Grant any role

Audit system Create user

Audit system by access Drop any procedure

Chapter 6: Oracle Database 11g Security 197

You can disable auditing by changing the audit_trail parameter to NONE or
using the noaudit SQL command to stop auditing specific statements. If you enable
auditing during an upgrade, the already existing auditing will not be removed,
however, the new auditing will be added to all existing schemas. You should be
aware that if you use default auditing, there is no automatic cleanup of the AUD$
table where the underlying audit records are stored. You will need to maintain this
table yourself.

NOTE
Oracle Database 10g still puts the AUD$ table in
the SYSTEM tablespace. Many DBAs move AUD$
to its own tablespace. However, Oracle does not
officially support moving AUD$ outside the SYSTEM
tablespace. In any event you need to make sure
you manage the tablespace space consumed by the
records in AUD$.

Password-Related Features
Several new password-related features are present in Oracle Database 11g. These
include:

 ■ Password settings related to the default profile

Password complexity ■

Password case sensitivity ■

Hacking prevention with failed logon delays ■

Password hashing changes ■

Default password usage ■

Let’s look at these features in a bit more detail.

Password Settings and the Default Profile
Oracle Database 11g has changed various password setting defaults in the
default profile. In the following table we provide the resource name, the Oracle

198 Oracle Database 11g New Features

Database 10g default value, and the Oracle Database 11g default value for the
default profile:

Note that this can have implications when you upgrade to Oracle Database 11g.
In particular the change to password_life_time means that your users will now have
to change their passwords every 180 days by default.

Password Complexity
You may have used the Oracle password verification routine contained in the
$ORACLE_HOME/rdbms/admin/utlpwdmg.sql script. Oracle Database 11g has
improved this functionality, making the password complexity verification routine
better. In the new version of utlpwdmg.sql you will find two different copies of the
password verification routine. The first is a new version of the password verify
routine called verify_function_11G. The old version of the password verify function
is still available in utlpwdmg.sql, except that it’s commented out.

The new verify function offers the following password checks:

 1. The password must be a minimum of eight characters in length.

 2. The password cannot be the same as the username.

 3. The password cannot be the same length as the username.

 4. The password cannot be the username spelled backwards.

 5. The password cannot be the same as the server name or the server name
with digits from 1 to 100 appended.

 6. Simple passwords will be rejected.

 7. The password must include one digit and one alpha character.

Resource Name
Oracle Database 10g
Default

Oracle Database 11g
Default

Failed_login_attempts 10 10

Password_grace_time Unlimited 7 (days)

Password_life_time Unlimited 180

Password_lock_time Unlimited 1 (days)

Password_reuse_max Unlimited Unlimited

Password_reuse_time Unlimited Unlimited

Chapter 6: Oracle Database 11g Security 199

Password Case Sensitivity
Password case sensitivity has been introduced in Oracle Database 11g. By default
case sensitivity is enabled. The sec_case_sensitive_login parameter controls case
sensitivity. To enable case sensitivity the sec_case_sensitive_login parameter should
be set to TRUE. To disable case sensitivity set the parameter to FALSE.

During upgrades or imports from previous versions of Oracle Database, existing
user passwords will remain case-insensitive until the passwords are changed. You
can determine if a password is case-sensitive by referencing the PASSWORD_
VERSIONS columns of the DBA_USERS view. Valid values in the PASSWORD_
VERSIONS column would be 10G for passwords assigned in 10g that are not case
sensitive yet in 11g (because they have not been changed). 10G 11G indicate a
password assigned to an account in 10g but then upgraded to 11g or an account
created in 11G that is case sensitive.

The orapwd program, which is used to create the password file, has also been
modified to allow or disallow case-sensitive passwords. A new parameter, ignorecase,
has been added to the command line. Ignorecase must be set to Y to enable password
case sensitivity for SYS and SYSDBA connections.

NOTE
Because Oracle Database versions prior to Oracle
Database 11g would always uppercase all passwords
(even when presented in lowercase), you must
consider the impacts of enabling case sensitivity
when upgrading to Oracle Database 11g. Enabling
case sensitivity can impact a great many things, for
example, scripts with passwords stored in lowercase
(where in fact the password is an uppercase
password) and database links. Test carefully if you
are upgrading and intend to use this new feature.

Hacking Prevention with Failed Logon Delays
Oracle Database 11g has introduced a logon delay that will take effect after the
third failed password entry attempt. Oracle will incrementally delay the next logon
or password prompt after the third failed attempt, up to a maximum of 10 seconds.
This only delays the time between login prompts and does not delay an actually
successful logon.

Oracle passwords can now contain multibyte characters without quoting. Also
the characters $, _, and # are allowed within a password without quoting when you
use the SQL*Plus connect command, or if you enter the password from the SQL*Plus
password prompt. As of this writing there were still places where these characters did
not work without being quoted, such as the SQL*Plus command line in UNIX and

200 Oracle Database 11g New Features

when using the create user and alter user commands. (Applications may also handle
these characters differently, so test carefully.)

Oracle has also added new parameters to help protect against various Internet
attacks including DOS attacks and brute force attacks. These parameters are

 ■ Sec_protocol_error_further_action Defines what actions should be taken
if a bad packet is received from a remote system. Options with respect to
the client connection are as follows:

 CONTINUE ■ Do not disconnect the client session. This is the default
setting.

 DROP ■ Drop the client connection after a specific number of bad packets.
This parameter takes an integer argument that defines the number of bad
packets that are acceptable.

 DELAY ■ Delay accepting client requests after a bad packet is requested.
This parameter takes an integer argument that defines the delay time in
seconds.

Sec_protocol_error_trace_action ■ Defines the level of tracing that should
occur. Options include:

 NONE ■ No logging occurs.

Arup Says…
This is one of those thorny areas that show up painfully during upgrades from
10g to 11g. Most applications developed under 10g probably did not consider
password case sensitivity, so they may be passing passwords in any case,
especially from user input. A web app, for instance, accepts the user’s password
(which may have been entered in any case) from a form and tries to connect to
the database. In 10g this wouldn’t have posed a problem with the case-
insensitive password, but in 11g it will fail if the correct case is not used. Of
course, the best option is the apps changing their code to make the password
given in the connect string either lower- or uppercase, but that could be more
easily said than done. So, what can you do, as a DBA, if you want to avoid one
of those upgrade-broke-my-system moments?

Simple. Just issue the following command:

alter system set sec_case_sensitive_logon = false;

The passwords will be case-insensitive now (just like the 10g behavior).
Later, the developers can fix their apps to pass the passwords in a consistent
case and then you can change the parameter to TRUE.

Chapter 6: Oracle Database 11g Security 201

 TRACE ■ A trace file is generated when bad packets are received. This is the
default setting.

 LOG ■ A small logging message is entered in the database alert log.

 ALERT ■ An alert message is sent to the DBA via OEM.

Sec_max_failed_login_attempts ■ Defines the number of authentication
attempts that a given client connection can make on the server before the
client process is dropped. The default value is 10.

Sec_return_server_release_banner ■ Determines if the server banner will be
returned to a client connection. Not returning the banner will make hacking
a database more difficult since the user will not know which version of the
database they are trying to hack.

Password Hashing Changes
Oracle passwords are now hashed using SHA1 encryption. The SHA1 algorithm
produces a 160-bit hashed output of the database password. Additionally, hashed
passwords are “salted,” which ensures that the resulting hash value for each hashed
password is different, even if the password is the same.

Default Password Use
In previous versions of the Oracle database various accounts might be assigned
default passwords, which can be a security risk. Oracle Database 11g introduces a
new data dictionary view, DBA_USERS_WITH_DEFPWD, that you can query to
determine whether a given user account is using one of these default passwords.
Here is an example of an 11g database that has a few too many accounts using
default passwords (okay, these are also likely to be locked too):

SQL> SELECT * FROM DBA_USERS_WITH_DEFPWD;
USERNAME

DIP
MDSYS
WK_TEST
CTXSYS
OLAPSYS
OUTLN
EXFSYS
SCOTT

202 Oracle Database 11g New Features

Fine-Grained Access Control
on Network Services
Oracle supplied PL/SQL utility packages such as utl_tcp, utl_smtp, utl_mail, utl_
http, and utl_inaddr that provide access to network services now have enhanced
security available. Rather than PUBLIC being granted execute privileges on these
packages, Oracle now has you create an access control list (ACL) in order to use
these packages.

NOTE
This is a potential upgrade issue if you are using
these packages. If you are using any of the network
service PL/SQL packages, you may get ORA-24247
errors after upgrading if you do not create an ACL for
the PL/SQL packages you are using.

Creating the ACL takes two steps. First you create the ACL and define the
privileges. Then you assign the ACL to one or more network hosts. Let’s look at
these steps in a bit more detail.

Create the ACL and Define
the Associated Privileges
To create the ACL list, you use the dbms_network_acl_admin.create_acl PL/SQL
package. In the call to the package you will assign a name to the ACL list, give it a
description, and assign a user account or a role that is being granted or denied
permissions. In the call you will also define whether this is a grant or a revoke of a
privilege, and what privilege you are granting or revoking. Finally you can optionally
enter start and end dates that the grant should be subject to. Here is an example of a
call to the dbms_network_acl_admin.create_acl package:

Begin
 Dbms_network_acl_admin.create_acl(
 acl=>'myweb-site-com-permissions.xml',
 description=>'Test ACL',
 principal=>'ROBERT',
 is_grant=>TRUE,
 privilege=>'connect');
end;
/

In the preceding example, we have created an ACL called myweb-site-com-
permissions.xml. We have given the grant connect (it’s case-sensitive) to the

Chapter 6: Oracle Database 11g Security 203

user ROBERT. There are two privilege options, connect and resolve. You must
have the connect privilege to connect to an external network with the UTL* utility
packages. The resolve privilege provides rights to use UTL_INADDR to resolve
hostname issues.

Once the ACL is created, you can add additional users or privileges using the
dbms_network_acl_admin.add_privilege procedure as seen here:

Begin
 dbms_network_acl_admin.add_privilege(
 acl=>'myweb-site-com-permissions.xml',
 principal=>'SCOTT',
 is_grant=>TRUE,
 privilege=>'connect');
end;
/

You can also use the dbms_network_acl_admin.delete_privilege procedure to
drop privileges and the dbms_network_acl_admin.drop_acl procedure to drop ACLs.

Assign the ACL to Network Hosts
Once you have created the ACL, you will need to assign that ACL to a network
host.computer using the dbms_network_acl_admin.assign_acl procedure. Here is
an example of the use of this procedure:

Begin
 dbms_network_acl_admin.assign_acl(
 acl=>'myweb-site-com-permissions.xml',
 host=>'RobertsDellXPS');
end;
/

Arup Says…
This is one of those wow features. Remember the Voyager worm that crawled
the Oracle databases all over the world about a year ago? The worm spread by
contacting a remote host using the utl_tcp package, even though the two
databases have no db links between them. The solution, in many cases, was to
shut off all access to utl_tcp. Although it worked for most, some users legitimately
needed access to utl_tcp. Using the ACL feature, you can now create a very fine-
grained ACL that allows access to only specific hosts, not all. So anyone can have
access to utl_tcp, but it’s ineffective unless the target port exists in the ACL.

204 Oracle Database 11g New Features

ACL-Related Data Dictionary Views
Oracle provides views that you can use to check ACL-related privilege assignments.
These views include:

 ■ DBA_NETWORK_ACLS

[DBA / ■ USER]_NETWORK_ACL_PRIVILEGES

Tablespace Encryption
Oracle Database 11g now supports tablespace-level encryption of data. In this
section we will discuss the following aspects of this new feature:

 ■ Overview of Oracle tablespace encryption

Preparing the database for encryption ■

Creating an encrypted tablespace ■

Encrypted tablespace performance ■

Overview of Oracle Tablespace Encryption
Oracle Database 10g introduced Transparent Data Encryption (TDE), allowing you
to encrypt data within specific columns of a table. Oracle Database 11g enhances
Transparent Data Encryption by providing for the encryption of all contents of a
given tablespace. Any permanent tablespace can be encrypted. Undo and
temporary tablespaces cannot be encrypted; however, all blocks and data created in
these tablespace types will be encrypted if they originate from an encrypted
tablespace. Additionally the redo log stream will be encrypted. Partitioning allows
you to mix and match encryption. One partition can be encrypted, and another may
not be encrypted, simply by virtue of which tablespace they are in.

Most Oracle features are available with encrypted tablespaces. There are some
restrictions on transporting encrypted tablespaces (cross-endianness transport is not
supported, and there are wallet-related restrictions if you are using wallets in the
destination database). Binary files (BFILES) and external tables are not encrypted in
Oracle (which makes sense as neither of these are stored in tablespaces!). Finally,
you cannot change the key of an encrypted tablespace once it has been set.

NOTE
Caution, if you lose the key, you lose your data.
Not a good thing. Protect your key from theft, but
also from loss! Lose your key and even Harry Potter
cannot save you.

Chapter 6: Oracle Database 11g Security 205

Preparing the Database for Tablespace Encryption
If you are already using Transparent Data Encryption in Oracle Database 10g to encrypt
columns, then you will be set up to use tablespace encryption. If you are not using TDE,
then to use tablespace encryption you must configure the database. This includes:

 ■ Configuring the compatible parameter correctly

Configuring an Oracle wallet ■

Opening the Oracle wallet ■

Determine which encryption algorithm you wish to use ■

Let’s look at each of these preparatory steps in more detail next.

Configuring the Compatible Parameter Correctly
To use tablespace-level encryption, you must have the compatible parameter
configured to a value of 11.1.0 or greater. Note that changing the compatible
parameter may impact other functionality in the database, so make sure you test
carefully after changing the compatible parameter. Note that the compatible
parameter is not a dynamic parameter, and you will have to cycle the database
before the new setting will take effect.

Here is an example of changing the compatible parameter (as you might do after
a database upgrade from Oracle Database 10g to Oracle Database 11g):

Alter system set compatible='11.1.0.0.0' scope=spfile;

Configuring and Opening Your Oracle Wallet
If you have already used Oracle’s Transparent Data Encryption features, then you
will have already configured your database’s Oracle wallet. All operations using
Transparent Data Encryption will require that you create and open a wallet. If you
have not configured your Oracle wallet, fear not; that is the topic of this section and
it’s fairly simple. First we need to create an entry for our wallet in the database
sqlnet.ora file. Then we will need to open the wallet and set the master encryption
key. Let’s look at these steps in more detail:

Configure the Sqlnet.ora File (Optional) Oracle will, by default, create the wallet
in the directory $ORACLE_BASE/admin/$ORACLE_SID/wallet (you will need to
create this directory if it does not already exist). If you wish to use a location other
than the default location, then configure the encryption_wallet_location parameter
in the sqlnet.ora file of our database. Here is an example of such an entry:

Encryption_wallet_location=
(source=(method=file)
(method_data=(directory=/mywallet)))

206 Oracle Database 11g New Features

NOTE
You can locate the directory for the wallet in any
location. However, Oracle recommends that you
not use the same directory where the standard
obfuscated wallet (cwallet.sso) is located. This is
typically in the $ORACLE_HOME/sysman/config/
monwallet directory.

Open the Wallet and Create the Master Encryption Key Having determined
where the wallet will be stored, we need to create the master encryption key and
open the wallet. We use the following alter system command to perform this action
(note this creates the wallet in the default directory):

Alter system set encryption key authenticated by "robert";

Note that you will only run this command once, and that the result is the creation
of the wallet using the password of robert, which is case-sensitive. Also note the
double quotes in the command instead of single quotes. The wallet will be opened
after it’s created.

The wallet is closed each time the database is shut down. You will need to
reopen the wallet each time you cycle the database, and the database will not open
until you open the wallet (which implies you have to nomount or mount the
database, open the wallet, and then open the database). The command is slightly
different to open an existing wallet:

Alter system set encryption wallet open authenticated by "robert";

While it might be an unusual operation, you can also close the wallet with the
alter system command as seen here:

Alter system set encryption wallet close;

NOTE
The password for the wallet is case-sensitive.

Determine Which Encryption Algorithm You Wish to Use
Oracle Database 11g supports four different encryption algorithms:

 ■ 3DES168

AES128 (Default) ■

AES192 ■

AES256 ■

Chapter 6: Oracle Database 11g Security 207

From a purely secure point of view the AES256 algorithm would appear to be
the most secure since it’s a 256-key encryption algorithm.

Creating Encrypted Tablespaces
You use the create tablespace command to create an encrypted tablespace, just as
you would any other tablespace. To indicate the encryption algorithm to be used,
you use the encryption using keyword. You must also include the keyword encrypt
in the storage clause to actually cause the tablespace to be encrypted. Here is an
example:

Create tablespace my_secure_tbs
datafile '/oracle01/oradata/orcl/my_secure_tbs_01.dbf' size 100m
encryption using '3DES168' default storage (encrypt);

You can also encrypt a tablespace using the default encryption algorithm by just
using the encryption keyword as seen here:

Create tablespace my_second_secure_tbs
datafile '/oracle01/oradata/orcl/my_second_secure_tbs_01.dbf' size 100m
encryption default storage (encrypt);

The [DBA|ALL|USER]_TABLESPACES views have a new ENCRYPTED column
added that indicates whether the tablespace has been encrypted or not.

There is no provision for enabling encryption of existing tablespaces in Oracle
Database 11g. Therefore if you wish to do such a thing you will need to create the
encrypted tablespace and then move the data into that tablespace using Oracle Data
Pump or a SQL command like alter table move. The same applies for decryption of
a tablespace; you simply have to move objects from an encrypted tablespace to one
that is not encrypted to de-encrypt the data.

NOTE
Tablespace encryption is not subject to the same
column-length restrictions that column-level
encryption is. For example, if you try to encrypt
a VARCHAR2(4000) column, you will get the
following results:

create table test_table_two (test_name
varchar2(4000) encrypt)
ERROR at line 1:
ORA-28331: encrypted column size too long
for its data type

You will not get this error if you create this table in
an encrypted tablespace.

208 Oracle Database 11g New Features

Encryption and Database Performance
Encryption can have impacts on database performance, sometimes significant.
Unlike compression, which serves to reduce the number of blocks read at the cost
of CPU, encryption does nothing to reduce the IO overhead, while adding CPU
overhead for encryption/de-encryption. Performance testing with tablespaces
configured for 3DES and AES encryption showed marked reduction in database
response times in both DML and SQL query operations. For example on my system
(an Intel dual-CPU system that is admittedly not in the running for fastest system of
the year), loading a table with 1,752,000 rows of data (119MB) took 21:30.39
minutes when unencrypted. Using 3DES encryption the same data took 28:30.24
minutes and AES took 28:54.13 minutes. In some cases where performance is a
consideration, it may make sense to just encrypt the columns you need to protect
rather than the entire object.

NOTE
If you have used encrypted columns before, you
will be aware that Oracle offers a NOSALT option.
NOSALT is not available with tablespace encryption.

Arup Says…
If you have used Transparent Data Encryption (TDE), introduced in 10g R2,
earlier, you might be wondering how this feature—Transparent Tablespace
Encryption (TTE)—adds any significant value. At first blush, they both appear to
do the same thing—transparently encrypting data; but with a major difference:
TDE applies to a column while TTE applies to a whole tablespace for all objects
within it and all columns of those objects. Well, why would you really care
about all the columns being encrypted, anyway? So, what additional value does
TTE provide?

The biggest disadvantage of TDE was performance; you couldn’t take
advantage of the index range scans or pattern matching on encrypted columns.
For instance, suppose you have an index on the column Social Security Number
(SSN), which is encrypted by TDE. If you want to select all SSNs starting with
123, you issue select * from accounts where ssn like '123%'. Since the column
is encrypted, the index on SSN will not be used by this query, which, of course,
affects performance.

That is exactly where TTE excels. It encrypts everything it has inside it, but
only on the disk. When the data goes into the cache, the values are decrypted.
Index matching occurs in the cache, where the values are in cleartext anyway;
so performance is not affected. This feature is unique in any non-Oracle
encryption solution and makes it so attractive.

Chapter 6: Oracle Database 11g Security 209

TDE and Log Miner, Logical Standby,
and Streams
TDE is now fully supported by Oracle Log Miner. As a result, logical standby
databases now also support the use of TDE. Note that the wallet that contains the
keys must be opened so that Log Miner can decrypt the encrypted data. You will
also note that the V$LOGMNR_CONTENTS view is populated with unencrypted
data. This is a fully expected result, according to Oracle. On the standby database
the wallet must be a copy of the wallet that is on the primary database. You can
change the table key and the table encryption algorithm on the standby database.
Oracle Streams now also supports TDE.

Oracle SECUREFILE LOBS
Oracle Database 10g provides for two different ways of storing LOBs in the database.
The previous way is now known as BASICFILE (which is still the default). The new
way is known as SECUREFILE. SECUREFILE LOBS offer several new features.

First, Oracle Database 11g reduces data redundancy by creating a secure hash
index and using that index to detect duplication. Identical LOBs are then coalesced
into a single image. The result is a reduction in storage and easier management.

SECUREFILE LOBS can also be compressed. This compression is separate from
any table or index compression. Two means of compression are supported, medium
and high.

Finally, SECUREFILE LOB data can be encrypted or stored in clear text. Each
LOB encryption specification is independent of the others. Several encryption
algorithms are supported including 3DES168, AES128, AES192, and AES256.

When you create a LOB, Oracle will by default create the old style of LOB,
which is known as a BASICFILE. If you wish to have SECUREFILE be the default, you
can set the db_securefile parameter to either of the following values:

 ■ ALWAYS Attempt to create as a SECUREFILE if possible. If not possible,
then revert to BASICFILE.

FORCE ■ Always create as a SECUREFILE. If unable, then generate an error.

SECUREFILE LOBS must be created in tablespaces using Automatic Segment Space
Management (ASSM), and you must have your wallet open in order to use SECUREFILE.

Here is an example of the creation of a table with a SECUREFILE LOB:

create table notes (note_doc clob
encrypt using 'AES128')
lob(note_doc) store as securefile
(cache nologging);

210 Oracle Database 11g New Features

End of Line
Security becomes more and more important as time goes on. Oracle Database 11g
has made some great strides in security as you can see from the pages in this
chapter. What remains for the DBA is to figure out how to best implement these
features. Sometimes it’s easy, and sometimes it’s hard but in the end, it’s our job to
protect these databases.

CHAPTER
7

Oracle Database BI and
Data Warehousing

New Features

211

212 Oracle Database 11g New Features

racle Database 11g offers a wealth of new features that relate to
business intelligence (BI) and the Oracle Data Warehouse. Several
new partitioning features are introduced, in addition to virtual
columns and features related to statistics collection. Additionally
Oracle Data Pump is improved, as are materialized views. The pivot

and unpivot clauses are introduced, and finally, table compression is much
improved. In this chapter, we will cover all these features in much more detail.

Partitioning
New partitioning features introduced in Oracle Database 11g include:

 ■ Interval partitioning

Extended composite partitioning ■

Reference partitioning ■

System partitioning ■

System-managed domain indexes ■

Let’s look at each of these new features in more detail next.

Interval Partitioning
Until now range-based partitioning often required some ongoing maintenance. For
example, if you were using date-based range partitioning with each partition storing
data for a particular month, you would need to create new partitions as new months
arrived. Now interval partitioning will create these partitions on demand for you.

Create Interval-Partitioned Tables
When you create a interval-partitioned table, you use the new interval keyword in
the create table statement to indicate the interval that you want each partition to
represent. For example, if you wanted to partition your DAILY_SALES table by
month using interval partitioning, then you would use this create table command
(forgive our minimal syntax in this chapter, of course things like PCTFREE and
PCTUSED are important!):

create table daily_sales
(product_id number not null
, customer_id number not null
, sale_dt date not null

O

Chapter 7: Oracle Database BI and Data Warehousing New Features 213

, quantity_sold number(3) not null
, unit_sale_price number(10,2) not null
, total_sale_price number(10,2) not null
, total_discount number(10,2) not null)
partition by range (sale_dt)
interval (numtoyminterval(1,'MONTH'))
(partition p_before_1_jan_2007 values
 less than (to_date('01-01-2007','dd-mm-yyyy')));

In this example the DAILY_SALES table will be created with one initial partition
(partition P_BEFORE_1_JAN_2007). This partition is known as the transition point. If
you include multiple partitions in the create table statement, then the last partition
defined will be the transition point. Oracle will create other partitions based on
the transition point. We can see the initial partition if we query against a data
dictionary:

select partition_name, high_value
from user_tab_partitions
where table_name = 'DAILY_SALES'
order by partition_position;

PARTITION_NAME HIGH_VALUE
------------------------------ --
P_BEFORE_1_JAN_2007 TO_DATE(' 2007-01-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA

Oracle Database 11g will automatically create new partitions in the table as
new data is entered into the table that requires a new partition. For example, if we
enter data for sales in February of 2007, we will need a new partition and the
database obliges, as seen here:

Insert into daily_sales values
(1,100,to_date('02-01-2007','mm-dd-yyyy'),100,10.00,1000.00,0);
commit;

select partition_name, high_value
from user_tab_partitions
where table_name = 'DAILY_SALES'
order by partition_position;

PARTITION_NAME HIGH_VALUE
------------------------------ --
P_BEFORE_1_JAN_2007 TO_DATE(' 2007-01-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
SYS_P41 TO_DATE(' 2007-03-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA

214 Oracle Database 11g New Features

NOTE
The partition is created regardless of the commit
operation. A rollback operation will not remove the
new partition.

Note the call to the numtoyminterval function in the interval statement. This
function converts the number passed into a valid interval year-to-month literal. You
would use numtoyminterval if you wanted partitions created automatically based on
a given span of months. For example, our create table statement will create a new
partition for every month. If we wanted to create a partition for every quarter, we
might change the interval command to interval (numtoyminterval(3,'MONTH')),
making sure that the first partition was created at the end of a given quarter, such as:

(partition p_before_1_jan_2007 values
 less than (to_date('12-31-2007','dd-mm-yyyy')));

You might also use the numtodsinterval function if you need to convert to a
valid day-to-second literal. This function can be used if you want partitions created
on a smaller scale like daily, hourly, per minute, or even down to the second. Use
of the store in clause is allowed so you can define which tablespaces partitions
should be created in.

Arup Says…
Interval partitioning puts one more “auto” into automated management in
Oracle Database. How many times have you received visits from irate
customers or angry emails about an error, “inserted value does not map to any
partition”? Well, all that is past now with interval partitioning. Oracle adds the
partitions as needed; not you.

However, there is a little annoying aftereffect: The partitions generated by
the system are not named by you; their names are system-generated—SYS_P41,
in this example. So, how can a developer target a specific partition by name
without querying the data dictionary all the time?

There is a great new syntax in Oracle 11g in SQL to address partitions by
values, not by name. Here is how you will use it:

select * from daily_sales partition for (to_date('31-dec-2007',
'dd-mon-yyyy'));

This will automatically choose the partition where 2-JAN-07 data resides, even
though the SQL did not specify the name. In Oracle 11g, developers should be
encouraged to use this syntax instead of using partition names. In that case, when
you change the name of the partition, the SQL statements will not be affected.

Chapter 7: Oracle Database BI and Data Warehousing New Features 215

Interval-Partitioned Table Restrictions
Restrictions that you need to be aware of with regard to interval-partitioned tables
include the following:

 ■ The interval-partitioned table can only have one partitioning key column,
and it must be of type NUMBER or DATE.

Index-organized tables are not supported. ■

You cannot create a domain index on an interval-partitioned table. ■

Interval partitioning does not support subpartitions. Thus, you can create ■
an interval partition on the main partition of a composite partitioned table,
but the subpartition cannot be interval-partitioned. Here is an example of
creating a composite interval-partitioned table using range-list partitioning:

create table daily_sales
(product_id number not null
, customer_id varchar2(2) not null
, sale_dt date not null
, quantity_sold number(3) not null
, ship_dt date not null
, unit_sale_price number(10,2) not null
, total_sale_price number(10,2) not null
, total_discount number(10,2) not null)
partition by range (sale_dt)
interval (numtoyminterval(1,'MONTH')) store in (tbs_1, tbs_2)
subpartition by list(customer_id)
 (partition p_before_1_jan_2007 values
 less than (to_date('01-01-2007','dd-mm-yyyy'))
 (subpartition sub_zero_three values('AA','AB','AC','AD'),
 subpartition sub_four_seven values('AE','AF','AG','AH')));

In this example, if we add a record outside the 01-01-2007 partition
boundaries, a new partition will be added, but only one subpartition will be
created, as seen here:

select table_name, partition_name, subpartition_count subpart_count
from user_tab_partitions where table_name='DAILY_SALES';

TABLE_NAME PARTITION_NAME SUBPART_COUNT
---------------------------- ------------------------------ -------------
DAILY_SALES P_BEFORE_1_JAN_2007 2
DAILY_SALES SYS_P42 1

We can also see from the next query that the one partition will accept any value:

select table_name, partition_name, subpartition_name, high_value
from dba_tab_subpartitions

216 Oracle Database 11g New Features

where table_name='DAILY_SALES';
TABLE_NAME PARTITION_NAME SUBPARTITION_NAME
------------ -------------------- --------------------
HIGH_VALUE
--
DAILY_SALES P_BEFORE_1_JAN_2007 SUB_FOUR_SEVEN
'AE', 'AF', 'AG', 'AH'
DAILY_SALES P_BEFORE_1_JAN_2007 SUB_ZERO_THREE
'AA', 'AB', 'AC', 'AD'
DAILY_SALES SYS_P42 SYS_SUBP41
DEFAULT

The ■ values clause does not allow the use of maxvalue, and the partitioning
key column cannot specify NULL values.

Maintain Interval-Partitioned Tables
Interval-partitioned tables are maintained the same way you maintain any other kind of
range-partitioned table. For example, if you like you can merge partitions, as seen here:

alter table daily_sales
merge partitions for(to_date('01-JAN-2007','dd-MON-yyyy'))
, for(to_date('01-FEB-2007','dd-MON-yyyy'))
into partition p_31_2007;

You might have noticed that the partition names are system-generated names,
which I hate personally. You can use the alter table rename partition command to
rename these partition names if you like. Here is an example:

alter table daily_sales rename partition sys_p41 to p_Jan_2007;

You can also migrate existing range-partitioned tables to use interval
partitioning. You simply use the alter table command, as seen in this example
where we create a new partition every month:

alter table employee_compensation
set interval (numtoyminterval(1,'MONTH'));

You may wish to see what the current interval setting for a given table is. You
can use the [DBA|ALL|USER}_PART_TABLES view to query this information. In the
following example we see that the interval for the DAILY_SALES table is monthly:

select table_name, interval from user_part_tables
where table_name='DAILY_SALES';

TABLE_NAME INTERVAL
------------------------------ --------------------------
DAILY_SALES NUMTOYMINTERVAL(1,'MONTH')

Chapter 7: Oracle Database BI and Data Warehousing New Features 217

Extended Composite Partitioning
Composite partitioning has been around in one form or another for some time, so
you should be familiar with the basic concept behind composite partitioning.
Oracle Database 11g extends composite partitioning, adding the following
composite partitioning methods:

 Composite range-range partitioning ■ This partitioning method will partition
data using the range method. Then for each partition, subpartitions are
created using the range method.

Composite list-range partitioning ■ This partitioning method will partition
data using the list method. Then for each partition, subpartitions are created
using the range method.

Composite list-hash partitioning ■ This partitioning method will partition
data using the list method. Then for each partition, subpartitions are created
using the hash method.

Composite list-list partitioning ■ This partitioning method will partition
data using the list method. Then for each partition, subpartitions are created
using the list method.

Here is an example of the use of this new partitioning method, a range-range
partitioned table. In this case, we have a table that is partitioned on SALES_DATE, and
subpartitioned on SHIPPED_ON_DATE. We might do this if we frequently look at sales
from a specific date (or date range) that are shipped on a specific date (or date range):

Create table sales_information
(customer_number number, item_number number,
 quantity_sold number, date_sold date, date_shipped date)
partition by range (date_sold)
subpartition by range(date_shipped)
(partition sold_bef_01_07
 values less than(to_date('01-01-2007', 'mm-dd-yyyy'))
 (subpartition sold_bef_01_07_ship_bef_01_07
 values less than(to_date('01-01-2007', 'mm-dd-yyyy')),
 subpartition sold_bef_01_07_ship_01_07
 values less than(to_date('02-01-2007', 'mm-dd-yyyy')),
 subpartition sold_bef_01_07_ship_02_07
 values less than(to_date('03-01-2007', 'mm-dd-yyyy'))),
 partition sold_01_2007
 values less than(to_date('02-01-2007', 'mm-dd-yyyy'))
 (subpartition sold_01_07_ship_01_07
 values less than(to_date('02-01-2007', 'mm-dd-yyyy')),
 subpartition sold_01_07_ship_02_07
 values less than(to_date('03-01-2007', 'mm-dd-yyyy'))));

All the new types of composite partitioned tables support local and global indexing.

218 Oracle Database 11g New Features

Reference Partitioning
Reference partitioning is a new partitioning method available in Oracle Database 11g.
With reference partitioning you will have two tables that form a parent-child
relationship, and you will logically equi-partition these tables. You reference-partition
two tables by creating the parent table first. Then you create the child table, defining
the foreign key constraint between the two tables and also including a partitioning
clause that references the foreign key. This can also be done with the alter table
command if both tables already exist. With reference partitioning, partition
maintenance operations cascade down to the child table, easing administration
of those objects. The result is that you cannot perform any partition maintenance
operations on the child table.

Let’s look at an example of reference partitioning. First, we create the partitioned
parent table:

create table customer_orders
(customer_id number, order_id number not null,
 order_date date not null, order_mode varchar2(8),
 order_status varchar2(1))
partition by range (order_date)
 (partition p_before_jan_2007
 values less than (to_date('01-JAN-2007','dd-MON-yyyy'))
, partition p_2007_jan
 values less than (to_date('01-FEB-2007','dd-MON-yyyy')))
parallel;

alter table customer_orders
add constraint customer_orders_pk
primary key (order_id);

Arup Says…
Extended composite partitioning opens up new avenues to partition the tables
more intelligently to reflect real-life situations. For instance, a hotel company
might want to archive data and allocate disks based on reservation date and
departure date. Instead of choosing one of the two as your partitioning scheme
with regular range-based partitioning, you can use composite partitioning and use
both columns as partition keys. This will ease the administration of management
of the data in the partitions, allowing you to create an initial partition on the
reservation date and then subpartition based on the departure date. This type of
partitioning scheme might reflect the business situation more accurately.

Chapter 7: Oracle Database BI and Data Warehousing New Features 219

Now that we have created the parent table, we will create the table
CUSTOMER_ORDER_DETAILS, which is the child table in this relationship. Note
that in the create table statement, there is no need to list any partition details. The
partitions are aligned with the partitions of the CUSTOMER_ORDERS table we
created previously:

create table customer_order_items
(order_id number not null
, product_id number not null
, quantity number not null
, sales_amount number not null
, constraint customer_order_items_orders_fk
 foreign key (order_id) references customer_orders(order_id))
partition by reference (customer_order_items_orders_fk)
parallel;

NOTE
Reference partitioning is not supported with interval
partitioning (discussed earlier in this section), index-
organized tables, external tables, or a domain index
storage table. Also the reference primary key or
unique constraint cannot point to a virtual column
(discussed later in this chapter).

The data dictionary has changed a bit to support reference partitioning, as seen
in the following query output from USER_PART_TABLES, USER_TAB_PARTITIONS,
and USER_PART_TABLES:

-- Look at the partitioned tables.
select table_name, partitioning_type, ref_ptn_constraint_name
from user_part_tables
where table_name in ('CUSTOMER_ORDERS','CUSTOMER_ORDER_ITEMS');
TABLE_NAME PARTITION REF_PTN_CONSTRAINT_NAME
------------------------------ --------- ------------------------------
CUSTOMER_ORDERS RANGE
CUSTOMER_ORDER_ITEMS REFERENCE CUSTOMER_ORDER_ITEMS_ORDERS_FK

-- Look at the partitions created.
select table_name, partition_name, high_value
from user_tab_partitions
where table_name in ('CUSTOMER_ORDERS','CUSTOMER_ORDER_ITEMS')
order by partition_position, table_name;
TABLE_NAME PARTITION_NAME HIGH_VALUE
------------------------------ ------------------------- --------------------
CUSTOMER_ORDERS P_BEFORE_JAN_2007 TO_DATE(' 2007-01-01
00:00:00', 'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN')
CUSTOMER_ORDER_ITEMS P_BEFORE_JAN_2007

220 Oracle Database 11g New Features

CUSTOMER_ORDERS P_2007_JAN TO_DATE(' 2007-02-01
00:00:00', 'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN')
CUSTOMER_ORDER_ITEMS P_2007_JAN

-- Here we can see the references between the two tables.
select up.table_name, up.partitioning_type, uc.table_name ref_table
from user_part_tables up,
(select r.table_name, r.constraint_name
from user_constraints uc, user_constraints r
where uc.constraint_name=r.constraint_name and uc.owner=r.owner) uc
where up.ref_ptn_constraint_name = uc.constraint_name(+)
and up.table_name in ('CUSTOMER_ORDERS','CUSTOMER_ORDER_ITEMS');
TABLE_NAME PARTITION REF_TABLE
------------------------------ --------- ------------------------------
CUSTOMER_ORDER_ITEMS REFERENCE CUSTOMER_ORDER_ITEMS
CUSTOMER_ORDERS RANGE

System Partitioning
Oracle Database 11g introduces system partitioning. System partitioning provides
the ability to create a single table that has many physical partitions. With system
partitioning you define a specific number of partitions, and you do not define a
partition key. The resulting table partitions will have no defined partitioning
method. As a result, when inserting data you must map the table rows to the
assigned partition, typically through the use of the partition-extended syntax. One
place that system partitioning is used is to support partitioning of domain indexes.

Creation of a system-partitioned table is straightforward. You just use the create
table command along with the partitioned by system keyword as seen in this example:

CREATE TABLE TestTable (col1 integer, col2 integer)
PARTITION BY SYSTEM(
 PARTITION s1 TABLESPACE tbs_s1, PARTITION s2 TABLESPACE tbs_s2,
 PARTITION s3 TABLESPACE tbs_s3, PARTITION s4 TABLESPACE tbs_s4);

Arup Says…
The feature of reference partitioning is nothing less than spectacular. It allows
you to create partitioned tables even when the partitioning key is not part of the
table itself. In this example, note that the column ORDER_DATE is not part of
the table CUSTOMER_ORDER_ITEMS, yet the table has been partitioned on that
column. Isn’t that amazing—partitioning on a nonexistent column?

In real life, this means a lot—it allows you to partition pretty much any table
in some predetermined consistent format as long as there is a parent-child
relationship. Prior to 11g, this was impossible. You either had to choose
different partition keys or put the partition key in all tables, whether needed or
not. Reference partitioning changed all that.

Chapter 7: Oracle Database BI and Data Warehousing New Features 221

Delete and update operations on system-partitioned tables do not require any
special syntax. However, when inserting into the TestTable, you must reference the
partition that you want the data to be inserted into, as seen in this example. Note
that if you remove the partition keyword, the statement will fail:

INSERT INTO TestTable PARTITION (s1) VALUES (4,5);

Most partition operations are supported with system-partitioned tables. They can
be indexed with local indexes, local bitmap indexes, and global indexes. Insert as
select operations are supported if they include a partition specification. Some
operations are not supported including create table as select and an insert as select
without a partition specification.

System-Managed Domain Indexes
We now move to system-managed domain indexes. Oracle Database 11g now allows
you to partition domain indexes. When partitioned, domain indexes are known as local
domain indexes. Local domain indexes are created using the create index command as
in this example where we add a comments column to CUSTOMER_ORDERS (which
we created earlier in this chapter) and then we create a system-managed domain index
on that column:

Alter table customer_orders add (comments varchar2(300));

create index customer_orders_idx on
customer_orders (comments) indextype is ctxsys.context
local (partition tbs_s1, partition tbs_s2);

Arup Says…
What possible value can system partitioning bring to the table? Plenty. What if
a table just can’t be partitioned in any way? But the table is so big that you do
want to partition it, on maintenance and manageability grounds. So, you strike
a deal with the developers that they will maintain the partitioning aspects of
DML statements while you manage the partitions. System partitioning is the
perfect solution for those cases.

Beware of one caveat, though. Suppose a developer issues this command:

update testable set col2 = 6 where col1 = 4;

This row exists in partition S1 and only that partition should be searched,
but Oracle does not know that. It searches all partitions for this row, affecting
performance. To remedy this issue, you should use this syntax:

update testable partition (s1) set col2 = 6 where col1 = 4;

222 Oracle Database 11g New Features

The result is that we now have a domain index that is equi-partitioned with the
base table that it is built on. This can improve performance of this index by allowing
for partition pruning and other partition-related operations. This can also improve
lookup times for certain types of queries (such as %value% types of queries).

NOTE
The number of partitions you define on this index
must equal the number of partitions in the base table
of the index.

Virtual Columns
The ability to create virtual columns is a new feature in Oracle Database 11g that
provides the ability to define a column that contains derived data, within the
database. In this section we will introduce you to virtual columns, discuss how to
create virtual columns, and discuss the use of virtual columns in partitioning.

About Virtual Columns
Derived values for virtual columns are calculated by defining a set of expressions or
functions that are associated with the virtual column when the table that the column
is going to reside in is created. You can also use the alter table command to add a
virtual column. The nice thing about virtual columns is that they do not consume
any storage, as they are computed on the fly.

You can use virtual columns pretty much anywhere that you would use a
normal column. You can query them, create indexes on them, and even collect
statistics on them. There are a few restrictions including:

 You cannot write to a virtual column. ■

There is no support for index-organized, external, object, cluster, or ■
temporary tables.

There is no support for Oracle-supplied datatypes, user-defined types, LOBs, ■
or LONG RAWs.

Virtual columns can be used in queries, DML, and DDL statements. They can be
indexed (the resulting index is essentially a function-based index), and you can
collect statistics on them. Thus, they can be treated much as other columns. Let’s
look at how to create a virtual column in the next section.

Chapter 7: Oracle Database BI and Data Warehousing New Features 223

Creating Tables with Virtual Columns
To create a virtual column within a create table or alter table statement, you use the
new as command, which is part of the virtual column definition clause. Figure 7-1
provides the basic syntax for the virtual column definition clause.

In the syntax of the as command, the parameters include:

 ■ Column is the name of the virtual column.

Datatype ■ is optional, and can be used to define the datatype of the column.

Generated always ■ is optional, and is just used to clarify that the data is not
stored on disk. Currently there is no need to include generated always in
any virtual column definition.

As (column_expression) ■ defines the content of the virtual column. Column
expressions for virtual columns are the same as those used in function-based
indexes and are subject to the same restrictions. Some specific restrictions
on column expressions include:

 The expression cannot reference another virtual column, including using the ■
same column expression used in another virtual column in the table.

 All columns referenced in the expression for the virtual column must exist in ■
the same table.

 The virtual column expression can reference a user-defined function. That ■
function must be deterministic, and the virtual column cannot be used as a
partition key column.

 The output of the column expression must be a scalar value. ■

Virtual ■ is optional.

Here is an example of the creation of a table with a virtual column. In this case,
we are going to create an employee table that derives the current value of the

FIGURE 7-1. The Virtual Column Definition clause syntax

datatype GENERATED ALWAYS
AS column_expression(

()

)column

VIRTUAL inline_constraint

224 Oracle Database 11g New Features

employees’ retirement benefit, which is a formula based on the employee’s years of
service, the total salary, and a multiple:

Create table employee
(emp_id number primary key,
 salary number (8,2) not null,
 years_of_service number not null,
 curr_retirement as (salary*.0005 * years_of_service));

Now that we have a virtual column, we will need to include the default keyword
when we do inserts into the table, like this:

insert into employee values (1,100000,5,default);

We can then see the virtual column in action:

select * from employee;

 EMD_ID SALARY YEARS_OF_SERVICE CURR_RETIREMENT
---------- ---------- ---------------- ---------------
 1 100000 5 250

You can see the virtual column setting by querying the DATA_DEFAULT
column in the DBA_TAB_COLUMNS view as seen here:

select table_name, column_name, data_default from dba_tab_columns
where table_name='EMPLOYEE' and column_name='CURR_RETIREMENT';

TABLE_NAME COLUMN_NAME DATA_DEFAULT

---------------- ------------------ ------------------------------
EMPLOYEE CURR_RETIREMENT "SALARY"*.0005*"YEARS_OF_SERVICE"

You can also add a virtual column using the alter table command as seen in this
example:

Alter table employee add
(curr_retirement as (salary*.0005 * years_of_service));

The fun does not stop there!! Perhaps we want to affix some form of message to
a virtual column. In this example, we characterize the status of one’s retirement
benefit and its impact on our business with the use of a searched case expression:

Create table employee

(emp_id number primary key,

 salary number (8,2) not null,

 years_of_service number not null,

 curr_retirement as (salary*.0005 * years_of_service),

Chapter 7: Oracle Database BI and Data Warehousing New Features 225

 retirement_impact varchar2(30) as (case

 when (salary*.0005 * years_of_service) < 100

 then 'MINIMAL'

 when (salary*.0005 * years_of_service) < 500

 then 'NORMAL'

 else 'WARNING WILL ROBINSON! DANGER!'

 end));

insert into employee values (1,10000,1,default,default);

insert into employee values (2,100000,5,default,default);

insert into employee values (3,100000,10,default,default);

select emp_id, salary, years_of_service yos,

curr_retirement cr, retirement_impact ri from employee;

 EMP_ID SALARY YOS CR RI

---------- ---------- ---------- ---------- ------------------------------

 1 10000 1 5 MINIMAL

 2 100000 5 250 NORMAL

 3 100000 10 500 WARNING WILL ROBINSON! DANGER!

Partitioning Tables with Virtual Columns
You can use virtual columns as the partition key of the table. Say, for example, that
we wanted to partition our employee table (for whatever reason) based on the
current retirement amount. We would issue the following SQL statement:

Create table part_employee
(emp_id number primary key,
 salary number (8,2) not null,
 years_of_service number not null,
 curr_retirement as (salary*.0005 * years_of_service))
partition by range (curr_retirement)
 (partition dont_owe_much values less than (100)
, partition owe_just_enough values less than (500)
, partition oh_no_we_are_in_trouble values less than (maxvalue));

Data Pump Single-Partition Imports
Oracle Data Pump now offers a partition mode that allows you to move specific
partitions or subpartitions of a table instead of the whole table or a specific tablespace.
In Oracle Database 10g, Data Pump Export allowed you to export one or more
partitions or subpartitions of a table. Oracle Database 11g Data Pump Import now
adds the partition_options parameter, which allows you to define how imported
partitions should be handled.

Here is an example of using Data Pump export to export a specific partition of
a table:

-- First, list the partition to be exported
select table_owner, table_name, partition_name

226 Oracle Database 11g New Features

from dba_tab_partitions
where table_owner='ROBERT' and table_name='SALES_INFORMATION';

TABLE_OWNER TABLE_NAME PARTITION_NAME
----------- -------------------- -------------------------
ROBERT SALES_INFORMATION SOLD_BEF_01_07
ROBERT SALES_INFORMATION SOLD_01_2007

-- Now, let's export the SALES_INFORMATION partitioned table
expdp robert/robert dumpfile=part_table.dmp directory=data_pump_dir
tables=(robert.sales_information.sold_bef_01_07) reuse_dumpfiles=y

NOTE
In our example you can see the use of the
reuse_dumpfiles parameter. This is another new
feature of Oracle Database 11g that allows you to
overwrite an existing dump file!

Using the new partition_options parameter, we can import this table as a
partitioned table (the default), or we can import it as a single, nonpartitioned table.
The options available when using the partition_options parameter are

 ■ None Creates the table as it exists in the dump file.

Departition ■ Creates individual tables from each individual partition. Thus
if you have a table with two partitions, you will end up with two separate
tables after the import.

Merge ■ Combines all partitions and subpartitions of the table into one
single table.

Here is an example of importing the table as a nonpartitioned table:

impdp prod/prod dumpfile=part_table.dmp directory=data_pump_dir remap_
schema=Robert:prod partition_options=merge

-- Successful import...
select table_name from user_tables where table_name='SALES_INFORMATION';
TABLE_NAME

SALES_INFORMATION

-- And no partitions
select count(*) from user_tab_partitions
where table_name='SALES_INFORMATION';
 COUNT(*)

 0

Chapter 7: Oracle Database BI and Data Warehousing New Features 227

Materialized Views and Query Rewrite
Oracle Database 11g introduces new and enhanced features associated with
materialized views and query rewrite. In this section we will discuss the following:

 Materialized view logging control ■

Online redefinition for tables with materialized view logs ■

Query rewrite during refresh ■

Partition Change Tracking (PCT) refresh for ■ union all mviews

New and enhanced materialized view catalog views ■

Query rewrite enhancements ■

Online Redefinition for Tables
with Materialized View Logs
Oracle Database 11g now supports online redefinition of tables that have materialized
view logs. You now just clone the materialized view log onto the interim table during
the redefinition process as you do triggers, indexes, and so on. One requirement is
that at the end of the redefinition process, you will need to perform a complete refresh
of your materialized views.

Query Rewrite During Refresh
Oracle Database 11g can now do query rewrite even if the materialized view is
being refreshed. This feature requires the query_rewrite_integrity parameter be set
to STALE_TOLERATED.

Partition Change Tracking Refresh
for Union All Mviews
Oracle Database 11g now supports PCT-based fast refresh for materialized views
that include a union all operator.

New and Enhanced Materialized
View Catalog Views
New and enhanced catalog views are available in Oracle Database 11g. These
changes provide information on

 Partition change tracking information for materialized views in the database ■

Information on freshness or staleness of individual partitions ■

228 Oracle Database 11g New Features

The new data dictionary views [DBA|ALL|USER]_MVIEW_DETAIL_PARTITION and
[DBA_MVIEW_DETAIL_SUBPARTITION provide detailed information as to the
staleness of individual partitions of a partitioned materialized view.

In addition to new catalog views, new columns have been added to the
[DBA|ALL|USER]_MVIEWS view (NUM_PCT_TABLES, NUM_FRESH_PCT_
REGIONS, and NUM_STALE_PCT_REGIONS) to indicate the total number of fresh
and stale PCT regions and the number of PCT tables.

The [DBA|ALL|USER]_MVIEW_DETAIL_RELATIONS view has new columns to
indicate whether the detail table is PCT-enabled and to also indicate the total
number of fresh and stale PCT regions. Here is an example of the creation of a
materialized view, on top of a partitioned table. We will then look at how the new
PCT-related columns work. First we create the base table of the mview; then we
create an mview log and then create the mview.

-- Create our demo table
CREATE table quarterly_sales (
 sales_month number, sales_person_id number
 ,date_of_sale date, cust_id number
 ,quantity_sold number, amount_sold number)
 PARTITION BY LIST (sales_month)(
 PARTITION qtr_one VALUES (1, 2, 3),
 PARTITION qtr_two VALUES (4, 5, 6),
 PARTITION qtr_three VALUES (7, 8, 9),
 PARTITION qtr_four VALUES (10, 11, 12),
 PARTITION others VALUES (DEFAULT));

-- Create the Mview log
CREATE MATERIALIZED VIEW LOG
 ON quarterly_sales WITH ROWID(sales_month)
 INCLUDING NEW VALUES;

-- Create the Mview
DROP MATERIALIZED VIEW mv_sales_sum;
CREATE MATERIALIZED VIEW mv_sales_sum
 BUILD IMMEDIATE
 REFRESH FAST ON DEMAND
 ENABLE QUERY REWRITE
AS
SELECT cust_id, sales_month, SUM(quantity_sold) as tot_qty_sold
 ,COUNT(quantity_sold) AS cnt_qty_sold
 ,SUM(amount_sold) as tot_amt_sold
 ,COUNT(amount_sold) AS cnt_amt_sold
 FROM quarterly_sales
 GROUP BY cust_id, sales_month;

-- Now, check the PCT info in user_mviews
select mview_name, num_pct_tables, num_fresh_pct_regions,
num_stale_pct_regions

Chapter 7: Oracle Database BI and Data Warehousing New Features 229

from user_mviews
where mview_name='MV_SALES_SUM';

MVIEW_NAME NUM_PCT_TABLES NUM_FRESH_PCT_REGIONS NUM_STALE_PCT_REGIONS
--------------- -------------- --------------------- ---------------------
MV_SALES_SUMM 1 5 0

-- What happens if we add a row..
insert into quarterly_sales values (1,22,sysdate,100,1,100.00);
commit;

-- Look at the catalog and we find that a partition is now stale:
select mview_name, NUM_FRESH_PCT_PARTITIONS, NUM_STALE_PCT_PARTITIONS
from user_mview_detail_relations
where mview_name='MV_SALES_SUM';
MVIEW_NAME NUM_FRESH_PCT_PARTITIONS NUM_STALE_PCT_PARTITIONS
--------------- ------------------------ ------------------------
MV_SALES_SUM 4 1

select mview_name, num_pct_tables, num_fresh_pct_regions,
num_stale_pct_regions
from user_mviews
where mview_name='MV_SALES_SUM';

MVIEW_NAME NUM_PCT_TABLES NUM_FRESH_PCT_REGIONS NUM_STALE_PCT_REGIONS
--------------- -------------- --------------------- ---------------------
MV_SALES_SUM 1 4 1

-- which one is stale? As we expect, partition QTR_ONE..
-- as we can see from this query:
select mview_name, detail_partition_name, freshness
from user_mview_detail_partition
where mview_name='MV_SALES_SUM';

MVIEW_NAME DETAIL_PARTITION_NAME FRESH
--------------- ------------------------------ -----
MV_SALES_SUM QTR_ONE STALE
MV_SALES_SUM QTR_TWO FRESH
MV_SALES_SUM QTR_THREE FRESH
MV_SALES_SUM QTR_FOUR FRESH

MV_SALES_SUM OTHERS FRESH

Query Rewrite Enhancements
Oracle Database 10g offered limited support for query rewrite when inline views, or
subqueries in the from clause were the same as inline queries in the materialized
view. In these cases, the text in these queries had to match the materialized view
query exactly or it could not be rewritten.

230 Oracle Database 11g New Features

Oracle Database 11g improves on this with the notion of equivalency. When
inline views of the query are “equivalent” with the inline views of the materialized
views, then the query will be eligible for rewrite. The following constitutes
equivalence in Oracle Database 11g:

 The ■ select list and group by lists are equivalent.

The ■ from clause contains the same, or equivalent, objects.

The joins are equivalent, including all sections of the ■ where clause.

The ■ having clauses are equivalent.

This new functionality is demonstrated in the following example:

-- You can use the SH schema to test this...
-- Create the MVIEW
CREATE MATERIALIZED VIEW MV_SUM_SALES
ENABLE QUERY REWRITE AS
SELECT MY_MV.prod_id, MY_MV.cust_id,
sum(MY_MV.amount_sold) sum_amount_sold
FROM (SELECT sales.prod_id, sales.cust_id, sales.amount_sold
FROM sales, products
WHERE sales.prod_id = products.prod_id) MY_MV
GROUP BY MY_MV.prod_id, MY_MV.cust_id;

-- Now, query the table in a "equivalent" way..
SELECT SQ.prod_id, SQ.cust_id,
SUM(SQ.amount_sold) sum_amount_sold
FROM (SELECT sales.prod_id, sales.cust_id, sales.amount_sold
FROM sales, products
WHERE sales.prod_id = products.prod_id) SQ
GROUP BY SQ.prod_id, SQ.cust_id;
-- The execution plan tells the tale. Notice the rewrite.

| Id | Operation | Name | Rows |

| 0 | SELECT STATEMENT | | 1 |
| 1 | MAT_VIEW REWRITE ACCESS FULL| MV_SUM_SALES | 1 |

Bad news, I’m afraid, though. Inline view rewrite is not available for the
following operations:

 Set operators ■

Grouping set clauses ■

Nested subqueries ■

Chapter 7: Oracle Database BI and Data Warehousing New Features 231

Nested inline views ■

Remote tables ■

You want more, you say? Okay, Oracle Database 11g now supports query
rewrite on remote objects using materialized views that reference the remote object.
So, if your SQL statement references a table like joe@my_db and an mview already
is using joe@my_db, you might well find your query rewritten to use that mview.
The mview has to be a local mview, and you must be running with query_rewrite_
integrity parameter set to STALE_TOLERATED.

The Pivot and Unpivot Clauses
Pivoting allows you to take a data structure (typically normalized) and essentially
restructure that data into a different format in order to get the information you need,
in a format that is easier to deal with. Pivoting may include summaries, averaging,
and other types of aggregations. Oracle Database 11g has added new pivot and
unpivot clauses to the select statement to make pivoting and unpivoting easier to
accomplish. In this section we will address these two new clauses.

The Pivot Clause
The pivot clause allows you to “flatten” a normalized table, if you will, providing
the data in a more usable format for your application or reporting purposes. For
example, say that we have a table or view that summarizes web hits to various web
sites every day. What we want is an easy-to-produce cross-tab report that shows us
the hits summarized for each quarter. Here is our table (note the use of a virtual
column in this table to derive the quarter associated with the record. We will use
this column in a little bit for our pivot operation):

create table web_hits
 (website_name varchar2(30),
 hit_date date,
 hit_quarter varchar2(5) as
 ('Q'||substr(ceil(to_number(to_char(hit_date,'mm')/3)),1,3)),
 num_hits number);
-- let's put some data in here…
truncate table web_hits;
begin
 dbms_random.initialize(1023);
 for tt in 1..365
 loop
 insert into web_hits
 values ('ROBERTSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,3)));
 insert into web_hits values ('BILLSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,3)));

232 Oracle Database 11g New Features

 insert into web_hits values ('DAVIDSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,3)));
 insert into web_hits values ('JEDSBLOG', sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,3)));
 insert into web_hits values ('TERRYSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,3)));
 insert into web_hits values ('DANSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,3)));
 end loop;
end;
/
-- of course, create indexes and analyze the table as required

Now that we have our test data, we want to see it in the following format:

In Oracle Database 10g we could generate this report in this way:

select website_name,
 sum(case when hit_quarter='Q1' then num_hits else null end) Q1,
 sum(case when hit_quarter='Q2' then num_hits else null end) Q2,
 sum(case when hit_quarter='Q3' then num_hits else null end) Q3,
 sum(case when hit_quarter='Q4' then num_hits else null end) Q4
from (select website_name, hit_quarter, num_hits
from web_hits) group by website_name;

Oracle Database 11g provides the new pivot clause, which provides a slightly
more streamlined version of this operation. Here is the SQL query that we would
use to generate the report:

-- Note that your output will differ from mine since we are using
-- random numbers.
select * FROM
 (select website_name, hit_quarter, num_hits from web_hits)
 pivot (sum(num_hits) for hit_quarter in ('Q1','Q2','Q3','Q4'))
 order by website_name;

and the result is:

WEBSITE_NAME 'Q1' 'Q2' 'Q3' 'Q4'
------------------------------ ---------- ---------- ---------- ----------
BILLSBLOG 4470125 2230694 7020588 7228769
DANSBLOG 4637120 2404018 8155904 7950024

 Website_
 name

Q1 Q2 Q3 Q4

hits for quarter # hits for quarter # hits for quarter # hits for quarter

Chapter 7: Oracle Database BI and Data Warehousing New Features 233

DAVIDSBLOG 4795485 2688444 7623701 7754571
JEDSBLOG 5607190 2194357 7495433 8045517
ROBERTSBLOG 5436279 1974066 6588326 6887461
TERRYSBLOG 5045030 2040091 7836385 7585883

NOTE
Oracle documentation indicates that the pivot
operation is optimized, which to me implies that
the optimizer has some special code available that
can improve its performance. In the testing I did
(admittedly not exhaustive), I saw performance
improvements in execution time of the pivot over
the case method that were significant (in one test,
consistently .85 seconds for case versus .34 seconds
for pivot). Your results may vary, of course.

What was really interesting in these tests was that
the cost of the two statements was equivalent except
that the execution plan for the case method used a
hash group by operation and the pivot plan used the
new sort group by pivot operation.

You can also pivot multiple columns if you like. For example, perhaps we
would add a column to indicate whether the web hit is an intranet web hit or a
normal web hit. Here is the SQL:

-- hit_type 1= regular and 2=intranet
alter table web_hits add(hit_type number);
update web_hits set hit_type=1;
commit;
-- add intranet hits..
begin
 dbms_random.initialize(1023);
 for tt in 1..365*30
 loop
 insert into web_hits values ('ROBERTSBLOG', sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,2)),2);
 insert into web_hits values ('BILLSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,2)),2);
 insert into web_hits values ('DAVIDSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,2)),2);
 insert into web_hits values ('JEDSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,2)),2);
 insert into web_hits values ('TERRYSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,2)),2);

234 Oracle Database 11g New Features

 insert into web_hits values ('DANSBLOG',sysdate-tt,
 default,tt*ceil(substr(abs(dbms_random.random),1,2)),2);
 end loop;
end;
/

So, now let’s do a pivot report on both intranet hits and regular web hits for
2006 (we just show the first two quarters because the report is too long to show in
this book otherwise):

select * FROM
 (select website_name, hit_type, hit_quarter, num_hits from web_hits)
 pivot (sum(num_hits) for (hit_type, hit_quarter)
 in ((1,'Q1') as InternetQ01, (2,'Q1') as IntranetQ01,
 (1,'Q2') as InternetQ02, (2,'Q2') as IntranetQ02))
 order by website_name;

WEBSITE_NAME INTERNETQ01 INTRANETQ01 INTERNETQ02 INTRANETQ02
-------------- ----------- ----------- ----------- -----------
BILLSBLOG 16714852 1649913 16072107 1586027
DANSBLOG 13067698 1287610 14765095 1458939
DAVIDSBLOG 16187401 1600155 13432231 1325907
JEDSBLOG 17048080 1682478 13603270 1342954
ROBERTSBLOG 15591637 1538418 14779765 1460401

TERRYSBLOG 17207025 1699643 13213661 1301877

The Unpivot Clause
So, perhaps you have a view that is already “pivoted” and you want to flatten it out
like a good little third-normal form (3NF) view. Oracle has introduced the unpivot
clause for just such a case. Assume we have created a pivot table from our earlier
queries as seen here:

Create table pivot_web_hits as
select * FROM
 (select website_name, hit_type, hit_quarter, num_hits from web_hits)
 pivot (sum(num_hits) for (hit_type, hit_quarter)
 in ((1,'Q1') as InternetQ01, (2,'Q1') as IntranetQ01,
 (1,'Q2') as InternetQ02, (2,'Q2') as IntranetQ02))
 order by website_name;

Now, we need to unpivot the data in that table, so we use the unpivot clause to
do so:

Select website_name, substr(hit_quarter,9,3), num_hits
from pivot_web_hits
unpivot (num_hits for hit_quarter in (INTERNETQ01, INTERNETQ02))
Order by website_name, substr(hit_quarter,9,3);

Chapter 7: Oracle Database BI and Data Warehousing New Features 235

WEBSITE_NAME SUB NUM_HITS
--------------- --- ----------
BILLSBLOG Q01 16714852
BILLSBLOG Q02 16072107
DANSBLOG Q01 13067698
DANSBLOG Q02 14765095
DAVIDSBLOG Q01 16187401
DAVIDSBLOG Q02 13432231
JEDSBLOG Q01 17048080
JEDSBLOG Q02 13603270
ROBERTSBLOG Q01 15591637
ROBERTSBLOG Q02 14779765
TERRYSBLOG Q01 17207025
TERRYSBLOG Q02 13213661

There are a few things to note in this example. First of all, note the slight data
transformation with the substr command. I used that to remove the INTERNET part
of the pivot table column name. Also notice that I explicitly list the column names
in the select statement. This is because Oracle would try to return the values of the
columns INTRANETQ01 and INTRANETQ02 in the query, so I had to filter those
out. You can also unpivot multiple columns just as you can pivot multiple columns.

Select *
from pivot_web_hits
unpivot (num_hits for (hit_type, hit_quarter) in
 (INTERNETQ01 as ('INTERNET','Q1'),
 INTRANETQ01 as ('INTRANET','Q1'),
 INTERNETQ02 as ('INTERNET','Q2'),
 INTRANETQ02 as ('INTRANET','Q2')))
Order by website_name, hit_quarter;

WEBSITE_NAME HIT_TYPE HI NUM_HITS
--------------- -------- -- ----------
BILLSBLOG INTERNET Q1 16714852
BILLSBLOG INTRANET Q1 1649913
BILLSBLOG INTERNET Q2 16072107
BILLSBLOG INTRANET Q2 1586027
DANSBLOG INTERNET Q1 13067698
DANSBLOG INTRANET Q1 1287610
DANSBLOG INTERNET Q2 14765095
DANSBLOG INTRANET Q2 1458939
... extra output removed for brevity ...

Table Compression
Oracle Database 10g offered the ability to compress data within a given table (or
table partitions). However, this compression was subject to restrictions that limited
the usefulness of the feature. In Oracle Database 11g, compression is enhanced and

236 Oracle Database 11g New Features

available when executing both regular and bulk-level DML. As a result, updating a row
in a compressed table no longer decompresses the associated block. Compression is
supported in the following cases:

 Direct path SQL*Loader operations ■

Create table as select ■ commands

Parallel inserts, or serial inserts with an append hint ■

Single-row or array insert and updates ■

Using compression on large tables that are frequently scanned can have a
significant positive impact on performance. To compress a table or partition you use
the compress keyword. Here we see a partitioned table that has only one of its
partitions compressed:

CREATE TABLE compress_demo (
 tab_id NUMBER(6), tab_rec_time date, tab_store varchar2(300))
PARTITION BY RANGE (tab_rec_time)
 (PARTITION long_ago
 VALUES LESS THAN (TO_DATE('01-JAN-2007', 'DD-MON-YYYY')) COMPRESS,
 PARTITION not_so_long_ago
 VALUES LESS THAN (TO_DATE('01-APR-2007', 'DD-MON-YYYY')),
 PARTITION close_but_not_yet
 VALUES LESS THAN (TO_DATE('01-JUN-2007', 'DD-MON-YYYY')),

 PARTITION now_or_future VALUES LESS THAN (MAXVALUE));

You can also use the alter table move command to compress existing tables (this would
require an outage), or you could use the Oracle online redefinition abilities to reduce
outage time to a minimum. Here is an example of using the alter table command to
compress the contents of a table. Also all future contents will be compressed:

Alter table emp move compress;

NOTE
Keep in mind that table compression comes with a
price in CPU.

We can determine whether a table or partition is compressed by looking at the
compression column in the [DBA / ALL / USER]_TABLES or [DBA / ALL / USER]_TAB_
PARTITIONS views as seen here:

select table_name, partition_name, compression
from dba_tab_partitions

Chapter 7: Oracle Database BI and Data Warehousing New Features 237

where table_name='COMPRESS_DEMO'
order by 1,2;

TABLE_NAME PARTITION_NAME COMPRESS
------------------------------ ------------------------------ --------
COMPRESS_DEMO CLOSE_BUT_NOT_YET DISABLED
COMPRESS_DEMO LONG_AGO ENABLED
COMPRESS_DEMO NOT_SO_LONG_AGO DISABLED
COMPRESS_DEMO NOW_OR_FUTURE DISABLED

So how big of a difference does compression make? I did a few experiments on
a table that was about 900MB in size with pctfree set to 10. I then compressed the
table and saw its size reduced to 9MB—yes, you read that right, from 900MB to
9MB compression. This was a table with a mix of numeric and character datatypes.
In other testing I saw similar compression.

NOTE
A side effect of compressing a table is that the
pctfree value for that table is set to 0. Also note that
when this book went to press, compression was a
separately licensed feature of the Oracle Database.
Although Oracle licensing changes over time, you
will want to ensure that you are properly licensed
before you start using this feature.

Arup Says…
How valuable is the compression feature in 11g? Note that compression was
available in 10g as well, but that was for bulk loads only. Compression in 11g
allows tables subject to OLTP activity to be compressed as well. The advantage
is not just saving space, which is probably trivial in this day and age where
disks are really cheap. The real advantage is in saving IO. When the table is
compressed, there are fewer blocks, fewer index blocks, and so on, which
results in fewer block reads. This in turn reduces cache buffer chains and the
need for buffers in the cache, improving the overall performance.

238 Oracle Database 11g New Features

End of Line
This has been a fun chapter to write, and I hope it was a fun one for you to read.
The new features and enhancements in this chapter are very usable ones. The new
partition options are outstanding, and some such as interval partitioning, long
waited for. Table compression is a spectacular new offering and it’s unfortunate that
it’s going to cost us more money to be able to use it. Oracle Database 11g is truly
full of new innovation and functionality. I can almost hardly wait to see what’s up
with Version 11gR2!

CHAPTER
8

Application Development

239

240 Oracle Database 11g New Features

everal new and improved features related to application development
are present in Oracle Database 11g. These include SQL*Plus features,
new online maintenance types of operations, new SQL features, and
finally new PL/SQL-related features. So let’s dive into these new
features in some more detail.

SQL*Plus
Oracle Database 11g has added new features to SQL*Plus including new set
commands and Fast Application Notification (FAN) events. In this section we will
discuss the new set commands first. We will then look at FAN events from RAC.

New set Commands
In this first section we will discuss the SQL*Plus new set commands. First we will
discuss the new set esschar. We will then cover the set errorlogging, command. So,
let’s get on with it!

Set esschar
The new SQL*Plus command set escchar is used to define characters that should be
escaped in filenames. For example, the @ command is translated by SQL*Plus as the
command to run a script. If the @ character is not escaped, then the use of the @ in
a given filename could cause problems in SQL*Plus. Valid characters to escape are
@, ?, %, and $. Use set escchar off to turn off the feature. Here is an example of the
use of the set escchar command:

SQL>set escchar @
SQL>get "file@.sql"

NOTE
Some cases will not require the quotes around the
filename.

Set errorlogging
SQL*Plus has added the set errorlogging command to provide additional methods
of trapping errors. When enabled, set errorlogging will cause errors generated by
SQL, PL/SQL, and SQL*Plus to be written to a logging table (SPERRORLOG by
default) for you to review. Oracle will create the SPERRORLOG table if it is not
present when you enable error logging. Here is an example of the use of the set
errorlogging command:

-- enable error logging
SQL> set errorlogging on
-- bad query

S

Chapter 8: Application Development 241

SQL> select * from dud;
ORA-00942: table or view does not exist
-- Here is a desc of the sperrorlog that the error messages are written
-- to.
SQL> desc sperrorlog
 Name Null? Type
 --- -------- --------------
 USERNAME VARCHAR2(256)
 TIMESTAMP TIMESTAMP(6)
 SCRIPT VARCHAR2(1024)
 IDENTIFIER VARCHAR2(256)
 MESSAGE CLOB
 STATEMENT CLOB
-- Query the sperrorlog table.
SQL> select username, timestamp, statement, message from sperrorlog;

USERNAME TIMESTAMP STATEMENT
---------- ------------------------------ -----------------------------
MESSAGE

SYS 11-AUG-07 09.54.47.000000 PM select * from dud
ORA-00942: table or view does not exist

Fast Application Notification Events
in an RAC Database
FAN events are events that Oracle RAC uses to notify applications about cluster state
and workload service-level changes (such as an instance being started or stopped).
SQL*Plus has a new -F argument that will allow it to receive these FAN events.

Online Application Maintenance
and Upgrade
Oracle Database 11g has added additional online application maintenance and
upgrade features that will be helpful to the DBA. These new features include:

 New ■ ddl_lock_timeout parameter

New ■ lock table parameter

Fewer exclusive locks taken during online operations ■

Invisible indexes ■

Let’s look at each of these new features in a bit more detail.

242 Oracle Database 11g New Features

New lock table Parameter
The lock table SQL command has a new parameter that is much like the ddl_lock_
timeout parameter. Using the new wait parameter, you can specify that the session
should wait a specific amount of time to acquire the lock being requested. Unlike
the ddl_lock_timeout parameter, there is no limit to how long you can wait to
acquire the lock. You can also use the nowait parameter to indicate that the session
should not wait at all. By default the lock table command will wait indefinitely to
acquire the lock. Here are examples of the use of the lock table command using the
wait and nowait parameters:

Lock table my_tab in exclusive mode wait 60;
Lock table my_tab in share mode nowait;

Fewer Exclusive Locks Taken
During Online Operations
Say good-bye completely to exclusive locks on the following operations:

 Create index online ■

Create materialized view log ■

Alter table enable constraint novalidate ■

Invisible Indexes
Have you ever created and then dropped an index, just to find that doing so
causes your database performance to take a nose dive? Perhaps in creating the
index the optimizer starts using it out of the blue, and the results are ugly. Perhaps
when you dropped that index, execution plans went wacko because they were
dependent on it. Dropping an index can be difficult if a number of concurrent
processes are using it. Rebuilding a dropped index can be time-consuming and
nerve-wracking when the boss is sitting there eyeing you, and your phone is
ringing off the hook.

Now you have a new friend in the index business, the invisible index. An
invisible index is an index that the optimizer cannot see, and therefore will not
consider when generating execution plans even if the index is specifically mentioned
in a hint. You can make a new index invisible when you create it. You can then test
it with representative SQL statements, including the new index in the hint of the SQL
statement, and determine the impact of the SQL statements. Likewise, if you are
planning on dropping an index, you can make it invisible. This will invalidate all
shared SQL statements that have execution plans using that index, and the optimizer
will stop considering that index for use.

Chapter 8: Application Development 243

You can make an index invisible when you create it with the create index
command by using the invisible keyword as seen in this example:

Create index ix_test on test(id) invisible;

You can also make an existing index visible or invisible using the invisible or
visible keywords with the alter index command as seen in these examples:

Alter index ix_test visible;
alter index ix_test invisible;

You can override the invisible attribute of all indexes by setting the optimizer_
use_invisible_indexes parameter at the system or session level. Setting this
parameter to TRUE will cause the optimizer to consider index usage regardless of
the invisible setting. You can use the [DBA / ALL / USER]_INDEXES view to determine
if an index is visible or invisible as seen in this example:

Select index_name, visibility from dba_indexes
where index_name='IX_TEST';
INDEX_NAME VISIBILIT
------------------------------ ---------
IX_TEST INVISIBLE

Here is an example of the use of an invisible index:

-- first the index is visible
SQL> alter index ix_test visible;
Index altered.
SQL> select * from test where id=1;
 ID

 1
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 13 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| IX_TEST | 1 | 13 | 1 (0)| 00:00:01 |
--
-- Now, make it invisible
SQL> alter index ix_test invisible;
Index altered.
SQL> select * from test where id=1;
 ID

 1
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 13 | 24 (5)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| TEST | 1 | 13 | 24 (5)| 00:00:01 |
--

244 Oracle Database 11g New Features

NOTE
If you rebuild an invisible index, the resulting
operation will make the index visible.

SQL
Several new SQL-related features have been introduced in Oracle Database 11g.
These include:

 Read-only tables ■

The SQL Query Result Cache ■

The Client Side Result Cache ■

Regular expression enhancements ■

Named and mixed notation ■

Let’s look at each of these new features in a bit more detail next.

Read-Only Tables
The alter table command can now be used to make a table read-only. This allows
the DBA to make a table read-only across the database, including the owner of the
table. The following examples demonstrate the use of the alter table command along
with the read only keywords to make a table read-only, and then the use of the read
write keywords to make the table read-write:

Alter table my_table read only;
SQL> delete from my_table;
delete from my_table
 *
ERROR at line 1:
ORA-12081: update operation not allowed on table "SCOTT"."MY_TABLE"
alter table my_table read write;

A new column in the [DBA / ALL / USER]_TABLES view, READ_ONLY, has been
added to help you determine if a table is read-write or read-only. Valid values for
the READ_ONLY column are YES and NO.

SQL Query Result Cache
The SQL Query Result Cache is useful in cases where you have large amounts of
data that is fairly static, and you query that data on a frequent basis. With SQL Query
Result Cache the results of a query are stored in the SGA (the shared pool in an area
called the result cache), and then can be used in subsequent queries, or even query
fragments. In this section we discuss the SQL Query Result Cache. First we will
discuss the parameters used to configure the SQL Query Result Cache. Then we will
discuss how the SQL Query uses Result Cache.

Chapter 8: Application Development 245

SQL Query Result Cache Parameters
The parameter result_cache_max_size can be set to indicate the maximum size of
the SQL Query Result Cache. This parameter is dynamically allocated by Oracle at
database startup if you do not set it. Setting this parameter to 0 will disable the
feature. Note that the PL/SQL Function Result Cache (discussed later in this chapter)
also shares this memory area.

NOTE
Remember that the SQL Query Result Cache is part
of the shared pool. This is an upgrade consideration
since this is a new area of memory in Oracle Database
11g and will thus reduce the amount of total memory
available to other areas of the shared pool.

The defaults that Oracle will use when configuring the result cache differ based
on which database parameters are set. Oracle will never allocate more than 75 percent
of shared pool memory to the result cache. The following table lists the parameters that
can be set, and which default percentage Oracle will use for allocating shared pool
memory to the result cache.

Note that the result cache will not be very efficient if the data changes
frequently, as Oracle will invalidate a cached result when transactions modify the
data, or any of the metadata of the associated objects used in the cached results.
Oracle uses a least-recently-used algorithm to age out result cache results.

Arup Says…
This feature can be somewhat simulated in pre-11g versions using triggers that
raise an exception whenever a DML statement is issued against the table. This
was effective but somewhat performance-inhibiting due to context switching.
Another way was to define a Virtual Private Database (VPD) policy that always
failed. Although that eliminated context switching (especially when the policy is
defined static), it also didn’t produce any meaningful feedback for the user. This
new feature in 11g solves both the problems with this simple implementation.

Parameter Default Percentage
of Shared Pool to Result Cache

memory_target 0.25%

sga_target 0.50%

Shared_pool_size 1%

246 Oracle Database 11g New Features

You can globally control result caching by setting the result_cache_mode
parameter. Valid values are

 MANUAL ■ Oracle will not use SQL Query Result Cache by default. You
must use the result_cache hint in order to use SQL Query Result Cache.

FORCE ■ If possible, all results will use SQL Query Result Cache. The no_
result_cache hint can be used to bypass the result cache.

Another parameter, result_cache_max_result, controls the maximum percentage
of the total result cache memory that any one result can consume. The default for
this value is 5 (5 percent) and can be from 1 to 100. Something else to note is that in
Oracle Database 11g Release 1 the result cache is not included in the view
V$SHARED_POOL_ADVICE.

When result_cache_mode is set to manual, you need to use the result_cache hint
in your SQL statements to indicate to Oracle that you want to store the results of the
query in the result cache. If the result_cache_mode is set to force then all query
results will be cached in the result cache. In this case, if you issue a SQL statement
and you want it to bypass the result cache, you can use the no_result_cache hint.

Using the Result Cache
You can tell if you are using the result cache by looking at the execution plan of
your SQL statement. Here is an example of a SQL statement that uses the result_
cache hint, along with its associated execution plan (the output is cleaned up for the
benefit of the size of this page):

select /*+ result_cache */ sum(sal) sum from emp;
 SUM

 29025
--
| Id | Operation | Name | Rows | Bytes | Cost
--
| 0 | SELECT STATEMENT | | 1 | 4 | 3
| 1 | RESULT CACHE | 67v5fz5wzz2ad7ruhbmr8wqanu | | |
| 2 | SORT AGGREGATE | | 1 | 4 |
| 3 | TABLE ACCESS FULL| EMP | 14 | 56 | 3
--

Note the result cache line in the execution plan. It indicates that the SQL Query Result
Cache is being used. Oracle provides a view, V$RESULT_CACHE_OBJECTS, that you
can use to review the status of the result cache item. The parameter cache_id relates to
the value in the NAME column of the execution plan. Thus I can execute this query:

Select name, status, row_count,creation_timestamp
from v$result_cache_objects
where cache_id=’67v5fz5wzz2ad7ruhbmr8wqanu’;

Chapter 8: Application Development 247

NAME STATUS ROW_COUNT CREATION_
-- --------- ---------- ---------
select /*+ result_cache */ sum(sal) sum Published 1 07-AUG-07
from emp

So, looking at the execution plan, the result cache operation will always
appear. How do you tell if you are actually using the result cache? The biggest
hint will be in reduced consistent GETs. For example in the first run of the
example select statement in this section, I had four consistent reads as it read the
EMP table and populated the cache. After the first run, my consistent reads were
reduced to 0.

Arup Says…
Those who are familiar with materialized views (MV) can surely draw a parallel
between the result cache and materialized views. While they may appear similar,
they are very different and are suitable for separate scenarios. An MV creates a
stored object on the database, akin to tables. You can convert a regular table into an
MV, create indexes, create MVs on other MVs, and so on. Result caches are stored
in memory, not in the database; they are sort of MVs created on the fly. Query
rewrite must be enabled to let a query use the MV instead of running the query
against a table; no such thing is needed for result cache, as long as the session or
system parameter says so. But the most important difference is the way the data is
considered to be stale. In MVs, if the data is stale, the optimizer still gets it, provided
the parameter stale_tolerated is set. In result cache, when the underlying data
changes, the cache is recomputed, so you get the best of both worlds.

Remember those pesky queries that took forever to run against dictionary
objects such as X$BH or DBA_FREE_SPACE, especially in a very large database?
In some cases such as our 64TB data warehouse, it’s virtually impossible to run
the queries against the view DBA_FREE_SPACE, as it sucks up the resources and
probably never comes back at all so we have to kill it. So, we resorted to creating
a table from the view and run the query against it. One tempting question that
might pop up is: will result cache make these types of queries faster? It is a perfect
condition for result cache, since the dictionary view is fairly static. Sadly, the
answer is no. Result cache can’t be applied to dictionary tables and views.

One other caveat in using result cache is that you must use a deterministic
function. A deterministic function always returns the same value when the same
data is passed to it. One example of a deterministic function is SUM(), which
always returns the same value every time two specific values are passed into it,
regardless of the time of the day. On the other hand, consider SYSDATE, whose
return value changes every time it is called, making it nondeterministic. If you
use such a function in the query, result cache will not be used.

248 Oracle Database 11g New Features

Managing the Result Cache
Oracle provides a PL/SQL package, dbms_result_cache, that provides information
on the result cache. For example, you can generate a report on the result cache
memory utilization with dbms_result_cache.memory_report. You can flush the
result cache with dbms_result_cache.flush. Also, Oracle provides new views to
help manage the result cache. These include:

 V$RESULT_CACHE_STATISTICS ■ Provides information and statistics on
cache settings and memory usage

V$RESULT_CACHE_MEMORY ■ Provides a list of all memory blocks and
related statistics

V$RESULT_CACHE_OBJECTS ■ Provides a list of all cached results (objects
and dependencies)

V$RESULT_CACHE_DEPENDENCY ■ Provides a dependency list for items
in the result cache

You can generate a report on the result cache using the Oracle PL/SQL
procedure dbms_result_cache.memory_report as seen in this example:

SQL> set serveroutput on
SQL> dbms_result_cache.memory_report
 SQL> exec dbms_result_cache.memory_report
R e s u l t C a c h e M e m o r y R e p o r t
[Parameters]
Block Size = 1K bytes
Maximum Cache Size = 864K bytes (864 blocks)
Maximum Result Size = 43K bytes (43 blocks)
[Memory]
Total Memory = 103528 bytes [0.077% of the Shared Pool]
... Fixed Memory = 5132 bytes [0.004% of the Shared Pool]
... Dynamic Memory = 98396 bytes [0.073% of the Shared Pool]
....... Overhead = 65628 bytes
....... Cache Memory = 32K bytes (32 blocks)
........... Unused Memory = 30 blocks
........... Used Memory = 2 blocks
............... Dependencies = 1 blocks (1 count)
............... Results = 1 blocks
................... SQL = 1 blocks (1 count)
PL/SQL procedure successfully completed.

You can flush the result cache with the PL/SQL procedure dbms_result_cache.flush.

Chapter 8: Application Development 249

Result Cache Restrictions
There are some restrictions to be aware of with regards to the result cache. These
include:

 Result cache does not support queries against data dictionary objects ■

Result cache does not support queries against temporary tables ■

Sequence pseudo columns (■ currval and nextval) are not supported.

Queries that use the following SQL functions: ■ current_date, current_
timestamp, local_timestamp, userenv/sys_context, sys_guid, sysdate and
sys_timestamp.

Non-deterministic PL/SQL functions. ■

Client Side Result Cache
Related to the SQL Query Result Cache is the Client Side Result Cache. The Client
Side Result Cache is use to improve query results on client-side applications. Client
Side Result Cache differs from SQL Query Result Caching in that the query result set
can be cached on both the server and the client side. The client side of the result
cache is enabled by setting two parameters:

 CLIENT_RESULT_CACHE_SIZE ■ This is the maximum size of the client
result cache in bytes. This is a per-process limit, thus it is cumulative on a
per-process basis.

CLIENT_RESULT_CACHE_LAG ■ This is the maximum time in milliseconds
between client round trips to the server to determine if any database
changes related to the query have occurred.

Regular Expression Enhancements
Oracle Database 11g has added two new features to regular expressions. The first is
the ability to access the nth subexpression from regexp_substr and regexp_instr.
The second is the ability to return the number of times that a pattern match is found
based on an input string when using the regexp_count function. Let’s look at each
of these in a bit more detail.

Access to the Nth Subexpression from regexp_substr and regexp_instr
A new parameter, subexpr, has been added to regexp_instr and regexp_substr that
allows you to find the nth occurrence of a subexpression of an input string. Here is
an example: Let’s assume that we have a string of characters that represents a set of

250 Oracle Database 11g New Features

flight pairs and we want to find the second subexpression of that pair. Our string
might look like 1okcslclas2lasslcokc3okcslclas4lasslcokc, which might read “flight
1 goes from OKC to SLC to LAS, flight 2 goes from LAS to SLC to OKC,” and so on.
If I want to find the position of the SLC string in the second OKCSLCLAS flight string,
I might run this select statement:

SELECT REGEXP_INSTR('1OKCSLCLAS2LASSLCOKC3OKCSLCLAS4LASSLCOKC',
'(OKC)(SLC)(LAS)', -- The regular expression patterns
2, -- Where to start searching
1, -- Which occurrence
0, -- This is the return option
'i', -- This is the match option (case insensitive)
2) -– This is the sub-expression (SLC) on which to search
"Position" FROM dual;

 Position

 5

The REGEXP_COUNT Function
The REGEXP_COUNT function returns the number of times that a given pattern
appears in a string. Here is an example:

SELECT REGEXP_COUNT('1OKCSLCLAS2LASSLCOKC3OKCSLCLAS4LASSLCOKC',
'OKCSLCLAS', -- The regular expression pattern
 2, -- Where (position) to start searching
'i') -- case insensitive search
"Count" FROM dual;
 Count

 2

Named and Mixed Notation from SQL
Oracle Database 11g now supports named and mixed notation for PL/SQL calls
within a SQL statement. For example:

Create or replace function my_func
 (p_one in number default 1, p_two in number default 5)
return number
is
 v_num number;
begin
 v_num:=p_one+(p_two*3.14159);
 return v_num;
end;
/
select my_func(p_two=>20) from dual;

Chapter 8: Application Development 251

NOTE
The call statement also accepts named and mixed
notation.

PL/SQL
Oracle continues to improve on PL/SQL in Oracle Database 11g with a number of
new features and enhancements. These include:

 The ability to create triggers as enabled or disabled ■

The ■ create trigger follows clause

Compound triggers ■

Inlining ■

The SIMPLE_INTEGER datatype ■

PL/SQL function result cache ■

Dynamic SQL ■

Dynamic SQL and REF cursors ■

PLW06009 warning ■

PL/SQL sequence enhancements ■

PL/SQL ■ continue statement

We will look at these new and enhanced features in the next several sections.

Create Triggers as Enabled or Disabled
Oracle Database 11g allows you to create a trigger either as enabled (the default) or
disabled using the new enabled or disable clause. If you want to create a trigger as
disabled, you would use the disable clause as seen in this example:

Create or replace trigger trigger_two
before insert on test
disable
begin
 null;
end;
/

252 Oracle Database 11g New Features

Create Trigger Follows Clause
The follows clause in the create trigger command lets you define the order in which
a set of triggers will follow when executing. For example, suppose you had two
triggers that were both before insert triggers. One was called TRIGGER_ONE and
the other was called TRIGGER_TWO. If you wanted TRIGGER_TWO to always
follow TRIGGER_ONE in execution, you would write TRIGGER_TWO using the
follows clause as in this example:

Create or replace trigger trigger_two
before insert on test
follows trigger_one
begin
 null;
end;
/

Arup Says…
The FOLLOWS functionality is also known as ordered trigger execution facility,
which ensures the order in which the triggers are executed if there are multiple
triggers of the same type. Now, this begs a question: How big a deal is it to
have triggers executed in a specified order?

It’s a big deal in some cases. For instance, a trigger populates some variable
or value, which is then used by all other triggers of the same type. In this case,
the first trigger must be executed first; otherwise the variable will not be set at
all, or set incorrectly. Prior to Oracle 11g, you had only one option: put all the
code in one trigger to guarantee the execution order. However, that also took
away a big functionality—the ability to modularize the code into coherent,
manageable pieces. In many cases it actually makes sense to put multiple
triggers of the same type to do many types of work. For instance, consider a
table that has a BEFORE INSERT ROW trigger to put some calculated value into
one of the columns. Later, another functionality was needed—to encrypt the
value. Before 11g you had only one choice—putting the encryption code in the
same trigger. However, in doing so, you introduced a risk by modifying an
existing code. The better approach is to put the encryption code on a separate
before-insert-row trigger and leave the original trigger alone. This also allows
you to selectively disable/enable the triggers. Before 11g, you couldn’t do that
since the order of firing was not guaranteed; in 11g, you can easily set the
clause that guarantees that the encryption code trigger will fire only after the
value-setting trigger. You get the best of both worlds.

Chapter 8: Application Development 253

Compound Triggers
If you have ever dealt with mutating trigger problems, then you will be interested in
compound triggers. In this section we will review compound triggers, and then look
at an example of one in use.

Compound Trigger Overview
A compound trigger is a PL/SQL trigger (no C or Java, nor can it call C or Java
procedures) that allows you to define actions that should occur at one of four trigger
points. These points are

 Before the firing statement ■

Before each row that the firing statement impacts ■

After each row that the firing statement impacts ■

After the firing statement ■

When one of these states is reached, a common set of PL/SQL code will fire, but
that code is independent of the state of the trigger that fired it (kind of the way the
package you modeled to handle mutating table errors was a separate object prior to
Oracle Database 11g). Once the PL/SQL code executes, the state is destroyed,
regardless of the success of the PL/SQL code that was executed. Note that a
compound trigger can only be fired in the event of a DML statement.

The compound trigger has two main sections. The first is the initial section
where variables and subprograms are declared. This is essentially like a normal
trigger, and code written in this part of the trigger will execute before any of the
code defined in the optional sections.

The optional section is where the code is created for the four trigger points in
the preceding list. The triggering points must appear in the order listed in the
preceding bulleted list.

Compound triggers can be associated with both tables and views. Also note that
if the compound trigger executes and then a rollback occurs, the local variables
associated with the compound trigger will be reset. Also if you have more than one
trigger on a table, you cannot be assured of the firing order of the compound trigger.

Compound Trigger Example
In this example we will assume that there is a table called SECRET_STUFF. It’s a
pretty simple table that looks like this:

create table secret_stuff(id number primary key,
 description varchar2(30),
 last_upd_user_id number);

254 Oracle Database 11g New Features

Whenever something is changed in the SECRET_STUFF table, we want an audit
record created in WHO_TOUCHED_SECRET_STUFF, which looks like this:

create table who_touched_secret_stuff(id number,
 touch_date date,
 user_id number);
alter table who_touched_secret_stuff add constraint pk_wtss
primary key (id, touch_date);

In the olden days it took a mess of code to do this auditing. We would have to
create our trigger, and we would also create a package that would collect the
information that needed to go into the WHO_TOUCHED_SECRET_STUFF table and
then write it out to that table when yet another trigger fired. With a compound
trigger, we just have one set of code to encapsulate all the trigger logic. Let’s look at
an example and then we will look at some of the details of that example:

CREATE OR REPLACE TRIGGER ctr_audit_secret_stuff
FOR INSERT OR UPDATE ON secret_stuff
COMPOUND TRIGGER
--Initial section begins
--Declarations
threshhold CONSTANT SIMPLE_INTEGER := 10;
TYPE secret_stuff_t IS TABLE OF who_touched_secret_stuff%rowtype
INDEX BY PLS_INTEGER;
v_secret_stuff secret_stuff_t;
idx SIMPLE_INTEGER:=0;
-- subprogram
PROCEDURE Flush_Secret_Array IS
n CONSTANT SIMPLE_INTEGER := v_secret_stuff.Count();
BEGIN
FORALL j IN 1..n
INSERT INTO who_touched_secret_stuff VALUES v_secret_stuff (j);
v_secret_stuff.Delete();
idx := 0;
END Flush_secret_Array;
-- Initial section ends
-- Optional section
BEFORE STATEMENT IS
BEGIN
v_secret_stuff.Delete();
idx := 0;
END BEFORE STATEMENT;
AFTER EACH ROW IS
BEGIN
idx := idx + 1;
v_secret_stuff(idx).ID:= :New.ID;
v_secret_stuff(idx).touch_Date := SYSDATE();

Chapter 8: Application Development 255

v_secret_stuff(idx).user_id := :New.last_upd_user_id;
IF idx >= Threshhold THEN
Flush_Secret_Array();
END IF;
END AFTER EACH ROW;
AFTER STATEMENT IS
BEGIN
Flush_Secret_Array();
END AFTER STATEMENT;
END ctr_audit_secret_stuff;
/

There are several things to note in this code. First we configured the ability to do
bulk loading of records into the WHO_TOUCHED_SECRET_STUFF audit table. In this
case, if you insert a number of records in one insert statement, every 10 statements
will result in a bulk load into the audit table. Note the forall call in the flush_secret_
array procedure that does the bulk loads.

NOTE
The other two trigger points we didn’t use were
the before statement and before each row trigger
points.

We created a collection called V_SECRET_STUFF that holds the data that we
need to load into the audit table. In this code, we use two of the four trigger points,
after each row and after statement. In the after each row section, as a row is
inserted into the table, we populate V_SECRET_STUFF with the data from that row
and increment the index. Note that in this section, if the array index reaches the
value of threshold, the array is flushed and the data is written. Each time an insert
statement completes, the after statement section runs, which flushes the array, thus
ensuring all changes are recorded in the audit table.

Here is a demonstration of the resulting trigger in action:

SQL> insert into secret_stuff values (1,'test',1);
1 row created.
SQL> select * from who_touched_secret_stuff;
 ID TOUCH_DAT USER_ID
---------- --------- ----------
 1 07-AUG-07 1
SQL> rollback;
Rollback complete.
SQL> select * from who_touched_secret_stuff;
no rows selected
SQL> select * from secret_stuff;
no rows selected

256 Oracle Database 11g New Features

SQL> insert into secret_stuff values (2,'testagain',3);
1 row created.
SQL> commit;
Commit complete.
SQL> select * from secret_stuff;
 ID DESCRIPTION LAST_UPD_USER_ID
---------- ------------------------------ ----------------
 2 testagain 3
SQL> select * from who_touched_secret_stuff;
 ID TOUCH_DAT USER_ID
---------- --------- ----------
 2 07-AUG-07 3

Compound triggers on views follow the same basic design except they have three
trigger points, the before statement, instead of each row, and the after each row.

Inlining
In the previous section, did you notice that we had a piece of code (flush_secret_
array) that was called from within the body of the code in a couple of places? There
are cases where it will be more efficient for Oracle to actually move that piece of
code into the different sections, in place of the actual call to the code. This is an
optimization that the Oracle PL/SQL optimizer can do, called inlining. You can also
identify code that you think should be inlined by using the pragma inline call in
your PL/SQL code, which would look something like this pseudocode:

Create or replace procedure add_pragma is …
 function proc_run(a pls_integer) is
 <function code>
 end;

Arup Says…
Compound triggers embody the concept of a tight little package of code that
must be self-contained in the sense that it should be initialized when called and
destroyed at the end. The example of mutating table error, as Robert mentions,
is a classic example where you have to employ before and after statements and
row triggers, along with a complex array of packaged variables, to pass tons of
data back and forth between the triggers. Compound triggers changed all that.
A compound trigger is a single piece of code. To pass data back and forth
between multiple parts of the code, you don’t need to have packaged variables,
but simple PL/SQL variables, which are not only easier to use, but offer a broad
choice of datatypes and collections as well. Compound triggers also place all
the logic for a particular functionality inside one piece of code, which makes it
easier to maintain.

Chapter 8: Application Development 257

begin
 pragma inline(proc_run, ‘YES’);
 a:=proc_run(1);
end;

To get Oracle to consider inlining when not using a PRAGMA, we need to set
the plsql_optimize_level to 3. For example, if we wanted to have Oracle consider
inlining for the compound trigger , we would issue the following call:

ALTER SESSION SET PLSQL_Warnings = 'enable:all';
ALTER SESSION SET PLSQL_Optimize_Level = 3;
ALTER SESSION SET PLSQL_Code_Type = native;

When we compiled the trigger we would find that we get two warnings
indicating our calls to flush_secret_array were inlined:

SQL> show err
Errors for TRIGGER CTR_AUDIT_SECRET_STUFF:
LINE/COL ERROR
-------- ---
32/1 PLW-06005: inlining of call of procedure 'FLUSH_SECRET_ARRAY' was
 done
37/1 PLW-06005: inlining of call of procedure 'FLUSH_SECRET_ARRAY' was
 done

SIMPLE_INTEGER Datatype
The simple_integer datatype is a subtype of the pls_integer datatype. The
simple_integer datatype has the same numeric range as pls_integer (-2147483648
to +2147483648) but lacks overflow checking (entering the largest number+1 will
wrap to the smallest number, and the reverse). Additionally this datatype will not
allow NULL values. These two differences serve to make the internal operation of
simple_integer faster than that of pls_integer when using native PL/SQL compilation.
There is also some reported performance improvement with non-native PL/SQL.

Arup Says…
Inlining is an example of how conventional wisdom could be detrimental in
some cases. Best practices in many languages preach a common theme—divide
and conquer; in other words, break the code into smaller pieces (modules) and
call the modules. They make maintenance of the code so much simpler.
However, unfortunately, they impacted performance in PL/SQL programs. In
Oracle Database 11g, inlining now allows you to write maintainable code
while letting Oracle transform the code into better-performing code.

258 Oracle Database 11g New Features

NOTE
Since the simple_integer datatype is declared as a
not null datatype, you must assign it a value when
defining it.

PL/SQL Function Result Cache
The PL/SQL Function Result Cache is much like the SQL Query Result Cache. It
allows PL/SQL function results to be cached in the SGA, reducing memory
requirements overall, improving performance and scalability. A PL/SQL function
can take advantage of the PL/SQL Function Result Cache by adding the result_
cache clause to the function definition. When enabled, Oracle will check the result
cache to see if a previous call to the function exists (using the same parameters) and
if so it will return the cached result instead of executing the function.

Restrictions on PL/SQL Function Result Cache include:

 The function cannot be defined in a module using invoker’s rights. ■

The function cannot be used in an anonymous block. ■

The function cannot have any OUT or IN OUT parameters. ■

The function cannot have IN parameters that are BLOB, CLOB, NCLOB, ■
REF CURSOR, collections, objects, or records.

The function cannot return a ■ blob, clob, nclob, ref cursor, objects, or
records. It can return a collection as long as the collection does not contain
one of these types.

An example of using the result_cache clause is seen in this sample PL/SQL
function. Note that we have also included the optional relies_on clause to indicate
that the EMP table is a dependency of the cached result:

Create or replace function get_name (id number)
return varchar2
result_cache relies_on(emp)
is
 v_return varchar2(30);
begin
 select ename into v_return from emp where empno=id;
 Return v_return;
end;
/

The PL/SQL Function Result Cache is controlled by the same parameters as the
SQL Result Cache, which is discussed earlier in this chapter.

Chapter 8: Application Development 259

Dynamic SQL
Oracle has enhanced both the dbms_sql package and native dynamic SQL (execute
immediate) functionality in several ways including:

 Native dynamic SQL statements can now exceed 32kb. ■

dbms_sql.parse ■ is now overloaded for clobs.

dbms_sql ■ now supports abstract datatypes such as collections, refs, and
opaque types.

dbms_sql ■ allows bulk binds using user-defined collection types.

Dynamic SQL and REF Cursors
A REF CURSOR can now be converted into a dbms_sql cursor. The reverse is also
true. This is supported with the new procedures in dbms_sql called dbms_sql.to_
refcursor and dbms_sql.to_cursor_number. Here is an example of using dbms_sql
.to_refcursor to take a dbms_sql cursor and convert it into a ref cursor:

CREATE OR REPLACE PROCEDURE find_emp_by_mgr (mgr_id NUMBER)
IS
TYPE name_list IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;
TYPE cur_type IS REF CURSOR;
src_cur cur_type;
c_hndl NUMBER;
emp_nos name_list;
ename_list name_list;
ret INTEGER;
sql_stmt CLOB;
BEGIN
c_hndl := DBMS_SQL.OPEN_CURSOR;
sql_stmt := 'SELECT empno, ename FROM emp
WHERE mgr = :b1';
DBMS_SQL.PARSE(c_hndl, sql_stmt, DBMS_SQL.NATIVE);
DBMS_SQL.BIND_VARIABLE(c_hndl, 'b1', mgr_id);
ret := DBMS_SQL.EXECUTE(c_hndl);
-- switch from dbms_sql to native dynamic SQL
src_cur := DBMS_SQL.TO_REFCURSOR(c_hndl);
-- fetch with native dynamic SQL
FETCH src_cur BULK COLLECT INTO emp_nos, ename_list;
IF emp_nos.COUNT > 0 THEN
DBMS_OUTPUT.PUT_LINE (' Empno Name');
DBMS_OUTPUT.PUT_LINE ('-------- ------------');
FOR i IN 1 .. emp_nos.COUNT LOOP
DBMS_OUTPUT.PUT_LINE(emp_nos(i) || ' ' || ename_list(i));

260 Oracle Database 11g New Features

END LOOP;
END IF;
CLOSE src_cur;
END find_emp_by_mgr;
/

And the result:

SQL> exec find_emp_by_mgr(7902);
Empno Name
-------- ------------
7369 SMITH

PLW 06009 Warning
If you use PL/SQL warnings much, you will notice a new one in Oracle Database 11g.
The PLW-06009 warning is now provided to indicate if there is a when others
exception handler that does not pass the exception up to the calling routine. For
example, if I have a procedure such as the following, it will raise this new error
because there is nothing done in the when others exception:

ALTER SESSION SET PLSQL_Warnings = 'enable:all';
Create or replace procedure my_proc
is
v_val varchar2(30);
begin
 select ename into v_val from emp where rownum < 2;
exception
when others then NULL;
End;
/
SP2-0804: Procedure created with compilation warnings
SQL> show err
Errors for PROCEDURE MY_PROC:
LINE/COL ERROR
-------- ---

7/6 PLW-06009: procedure "MY_PROC" OTHERS handler does not end in
 RAISE or RAISE_APPLICATION_ERROR

PL/SQL Sequence Enhancement
Oracle Database 11g has improved sequence use in PL/SQL. You can now directly
assign the next and current value of a sequence as an assignment as in this sample
PL/SQL code:

Declare
 Seq_id number;
 seq_two number;

Chapter 8: Application Development 261

Begin
 Seq_id:=the_sequence.nextval;
 seq_two:=the_sequence.currval;
 dbms_output.put_line(seq_id);
 dbms_output.put_line(seq_two);
End;
/

PL/SQL Continue Statement
Many programming languages have a continue statement that can be used inside a
looping structure to cause the next iteration of the loop to occur, rather than process
the remainder of the current loop iteration. In complex looping structures this can
save some processing time. Oracle Database 11g now provides the continue
statement for this very purpose. Here is a simple example:

Set serveroutput on
Declare
 v_counter number:=0;
begin
 for count in 1..10
 LOOP
 v_counter:=v_counter + 1;
 dbms_output.put_line('v_Counter = '||v_counter);
 continue when v_counter > 5;
 v_counter:=v_counter+1;
 END LOOP;
end;
/

Arup Says…
If I were to compile a list of felonious offenses in PL/SQL programming practices,
the practice of writing when others then null would rank high, very high.
Unfortunately, it’s also a very commonly used sloppy programming practice that
is a breeding ground for bugs later. It’s high time Oracle put some type of quality
check into the PL/SQL compilation process; and now it has done so—in the
form of the warning.

However, the check for when others then null does not happen automatically.
To make the compiler check for it, you have to compile with the special compiler
directive plsql_warnings as shown in this example:

alter procedure p compile plsql_warnings = 'enable:all';

If you omit the clause plsql_warnings, the compiler will not check for this
construct.

262 Oracle Database 11g New Features

v_Counter = 1
v_Counter = 3
v_Counter = 5
v_Counter = 7
v_Counter = 8
v_Counter = 9
v_Counter = 10
v_Counter = 11
v_Counter = 12
v_Counter = 13

You can also continue to outer loops by creating a label before the outermost
loop and then issuing a continue statement as in this example:

Set serveroutput on
Declare
 v_counter number:=0;
begin
 <<BeforeLoop>>
 for outer_loop in 1..10
 LOOP
 for count in 1..10
 LOOP
 v_counter:=v_counter + 1;
 dbms_output.put_line('v_Counter = '||v_counter);
 continue BeforeLoop when v_counter > 5;
 v_counter:=v_counter+1;
 END LOOP;
 END LOOP;
end;
/

End of Line
Once again we have seen in this chapter that Oracle Database 11g has a number of
new features. In this chapter we looked at new features revolving around SQL*Plus,
Online Application Maintenance, SQL and PL/SQL. As always, the new features that
Oracle introduces make our lives much easier, and make the database product
much more powerful. Arup has done a great job of further highlighting these new
features!

CHAPTER
9

Performance Tuning

263

264 Oracle Database 11g New Features

erformance tuning in Oracle has always been an important part of the
DBA’s life. We have already discussed certain features such as Database
Replay and the SQL Performance Analyzer (both in Chapter 5). This
chapter covers more on Oracle Database 11g performance-related
features. We look at improvements in monitoring Oracle Database–

related processes, several statistics-related changes, SQL Plan Management, and
several other new performance-tuning–related features in Oracle Database 11g. Now
strap in, throttle up, and let’s go ballistic!

Enhanced Oracle Process Monitoring
Sometimes an Oracle process (like SMON) will cause database performance-related
issues. You can now identify the events that are causing the database problems by
looking at new columns in the V$SYSTEM_EVENT view. The new columns are

 TOTAL_WAITS_FG ■ This is the total number of waits that a foreground/
background session waited for the event.

TOTAL_TIMEOUTS_FG ■ This is the total number of timeouts for an event
that a foreground/background session waited.

TIME_WAITED_FG ■ This is the amount of time that a foreground/
background session waited for the event in centaseconds.

AVERAGE_WAIT_FG ■ This is the average wait time that a foreground/
background process waited for the event in centaseconds.

TIME_WAITED_MICRO_FG ■ This is the total time in microseconds that a
foreground session spent waiting on an event.

For example, I could run the following query to find all cumulative waits of more than
one second that occurred on foreground/background processes:

select event, total_waits_fg twg, total_timeouts_fg ttf,
time_waited_fg twf, average_wait_fg awf,
time_waited_micro_fg twmf
from v$system_event
where time_waited_micro_fg > 1000000
and wait_class !='Idle';

EVENT TWG TTF TWF AWF TWMF
------------------------ ------ ------- ---------- ------- ----------
db file sequential read 10,449 0 2,347 0 23,474,002
db file scattered read 894 0 384 0 3,843,803

P

Chapter 9: Performance Tuning 265

library cache load lock 11 0 136 12 1,362,976
resmgr:cpu quantum 66 0 770 12 7,703,445
reliable message 4 2 251 63 2,511,143
control file heartbeat 1 1 400 400 3,999,654

So, in this case it seems that the background processes are having issues with the
disk. Since it’s a cumulative time of 23 seconds, I probably would not worry too much
about the disks if the database has been up for any length of time. The V$SYSTEM_
WAIT_CLASS view has many of the same new columns as V$SYSTEM_EVENT.

Further, the AWR-related view DBA_HIST_SYSTEM_EVENT provides these new
columns:

 TOTAL_WAITS_FG ■ This is the total number of waits for an event, from a
foreground session.

TOTAL_TIMEOUTS_FG ■ This is the total number of timeouts for an event,
from a foreground session.

TIME_WAITED_MICRO_FG ■ This is the total time in microseconds that a
foreground session spent waiting on an event.

So, we could look in the DBA_HIST_SYSTEM_EVENT view to see if our snapshots are
picking up a trend and see if background processes are waiting for the db file
sequential file read event as seen in this query:

select a.begin_interval_time,
substr(a.end_interval_time-a.begin_interval_time,11,9) snap_time_hms,
-- Note we use the lag function here to get the difference in the waits
-- between the two snapshots. A negative number indicates an instance
restart.
b.total_waits_fg
- lag(b.total_waits_fg,1) over (order by a.begin_interval_time) twg,
b.total_timeouts_fg
- lag(b.total_timeouts_fg,1) over (order by a.begin_interval_time) ttf,
b.time_waited_micro_fg
- lag(b.time_waited_micro_fg,1) over (order by a.begin_interval_time) twmf
from dba_hist_snapshot a, dba_hist_system_event b
where a.snap_id=b.snap_id
and a.dbid=b.dbid and a.instance_number=b.instance_number
and b.event_id=2652584166 -- db file sequential read event id
and a.begin_interval_time > sysdate – 4
order by a.begin_interval_time;

BEGIN_INTERVAL_TIME SNAP_TIME TWG TTF TWMF
------------------------- --------- ------- ------- ------------------
09-AUG-07 10.59.41.000 AM 01:00:34
09-AUG-07 12.00.15.262 PM 01:00:06 699 0 2,496,748
09-AUG-07 01.00.21.649 PM 01:00:07 121 0 380,375

266 Oracle Database 11g New Features

09-AUG-07 02.42.57.000 PM 00:17:09 -9,393 0 -136,038,275
09-AUG-07 03.00.06.749 PM 01:00:06 306 0 691,525
09-AUG-07 04.00.12.952 PM 01:00:06 19 0 30,100
09-AUG-07 05.00.19.068 PM 01:00:06 140 0 298,194
09-AUG-07 06.00.25.883 PM 01:00:07 42 0 91,049
09-AUG-07 07.00.33.078 PM 01:00:07 14 0 46,215
09-AUG-07 08.00.40.416 PM 01:00:07 1 0 1,044
09-AUG-07 09.00.47.609 PM 01:00:08 9,764 0 49,575,851
09-AUG-07 10.00.56.003 PM 00:59:08 11,831 0 24,009,039

Statistics
These days our Oracle databases live and breathe statistics. Statistics can have such a
profound impact on execution plans, and we need to be aware of all the new features
associated with statistics. In this section we will cover new features including:

 Pending and published statistics ■

Recovering previous statistics ■

Extended statistics ■

Pending and Published Statistics
Oracle Database 11g gives you the option of publishing statistics after they are
collected (this is the default behavior), or you can have newly collected statistics
saved in a pending state. In this section we will look at how to determine whether
statistics are published when collected or pending. We will then look at how to
control whether collected statistics are published or pending in the database. We
will then look at data dictionary views associated with statistics.

Determine Whether Statistics Are Automatically Published
To determine whether the database will publish statistics when they are generated or
they will be held in pending status, you use the dbms_stats.get_prefs function. It will
return TRUE if the statistics will be published or FALSE if they will not be published.
By default the setting for an Oracle Database is TRUE (thus, statistics are published
when generated). Here is an example:

Select dbms_stats.get_prefs('PUBLISH') from dual;

DBMS_STATS.GET_PREFS('PUBLISH')

TRUE

Oracle also provides a parameter, optimizer_use_pending_statistics, that will
cause the optimizer to always use pending statistics, if available, rather than

Chapter 9: Performance Tuning 267

published ones. If pending statistics are not available, then Oracle will use the
published statistics.

Modify the Publish Setting
You can change the PUBLISH setting (indicating whether statistics should be published
or not when collected) at either the schema or table level. To set an entire schema so
that collected statistics should not be published, you would use the dbms_stats.set_
schema_prefs procedure as seen in this example:

Exec dbms_stats.set_schema_prefs('SCOTT', 'PUBLISH', 'false');

To modify a table so that it will use not use newly collected statistics until they are
published, we can use the dbms_stats.set_table_prefs procedure. In this example, we
are setting the PUBLISH preference for the EMPLOYEE table to FALSE. As a result,
newly collected statistics will be staged, and will not be used until they are published:

Exec dbms_stats.set_table_prefs('SCOTT','EMPLOYEE', 'PUBLISH', 'false');

Pending Statistics and the Data Dictionary
Having collected statistics that are pending, you will want to review them to make
sure they make sense. Pending table statistics are kept in the USER_TAB_PENDING_
STATS data dictionary view. Pending column statistics in the USER_COL_PENDING_
STATS data dictionary view and pending index statistics are kept in the USER_IND_
PENDING_STATS data dictionary views.

If you determine that you do not wish to publish the pending statistics, you can
remove them through the dbms_stats.delete_pending_stats procedure. The following
example shows how to delete statistics for the entire database, a given schema, and a
specific object in a given schema:

-- Delete all pending statistics
Exec dbms_stats.delete_pending_stats(null, null);
-- Delete pending statistics for SCOTT
Exec dbms_stats.delete_pending_stats('SCOTT', null);
-- Delete pending statistics for SCOTT.EMPLOYEE
Exec dbms_stats.delete_pending_stats('SCOTT', 'EMPLOYEE');

Publishing Statistics
To publish pending statistics you use the dbms_stats.publish_pending_stats procedure.
You can publish all pending database statistics as seen in this example:

Exec dbms_stats.publish_pending_stats(null,null);

You can also choose to publish statistics for a specific schema, as in this
example where we are going to publish all pending statistics for the SCOTT schema:

Exec dbms_stats.publish_pending_stats('SCOTT',null);

268 Oracle Database 11g New Features

We can also publish statistics for a specific object, as seen in this example where
we are publishing pending statistics for SCOTT.EMPLOYEE:

Exec dbms_stats.publish_pending_stats('SCOTT', 'EMPLOYEE');

Recovering Previous Statistics
It happens. In fact, it happened where I work not all that long ago. You generate
statistics on an object only to find that, for whatever reason, you have only made things
worse. Maybe the way you generated the statistics was wrong; maybe the problem was
related to the time when you generated the statistics (perhaps the table was empty at
the time); or maybe you are just having one of those days when nothing goes right.

Oracle sympathizes with your plight. In earlier days, if you were lucky, you had
exported your statistics before you regenerated them, so you could import those
statistics back into the data dictionary if things went badly. Now Oracle Database 11g
allows you to restore previous versions of statistics (I’m surprised they don’t call this
flashback statistics, but what do I know?).

In the following sections we will discuss how to restore statistics, how to
maintain the repository of historical statistics, and where to find your old statistics.

Restoring Old Statistics
Oracle provides several procedures in the dbms_stats PL/SQL package that can be
used to restore statistics based on a specific timestamp (see the section titled Data
Dictionary and Historical Statistics Views later in this section for data dictionary
views that will provide timestamps for you to use when restoring statistics). These
procedures include:

 Dbms_stats.restore_dictionary_stats ■ Restore data dictionary stats

Dbms_stats.restore_fixed_objects_stats ■ Restore fixed object stats

Dbms_stats.restore_schema_stats ■ Restore schema stats

Dbms_stats.restore_system_stats ■ Restore system stats

Dbms_stats.restore_table_stats ■ Restore table stats

Let’s look at an example. First, let’s find out when we last gathered statistics:

select * from dba_optstat_operations;
OPERATION TARGET START_TIME
----------------------------- ------------------------------------
END_TIME

Chapter 9: Performance Tuning 269

gather_database_stats(auto) 19-AUG-07 06.00.08.477333 AM -06:00

19-AUG-07 06.02.28.607562 AM -06:00

Let’s restore the SCOTT schema statistics back to that point in time:

Exec dbms_stats.restore_schema_stats('SCOTT', -
'19-AUG-07 06.00.08.477333 AM -06:00');

Maintaining the Historical Statistics Repository
Oracle will manage the historical statistics repository, purging old statistics on a
regular basis, by default every 31 days (meaning that the furthest back you can
restore optimizer stats would be within the last 31 days). You can adjust this
retention by using the procedure dbms_stats.alter_stats_history_retention.

You can manually purge statistics with the dbms_stats.purge_stats procedure.
There are two other functions that might come in handy:

 dbms_stats.get_stats_history_retention ■ Returns the current retention
value

dbms_stats.get_stats_history_availability ■ Returns the oldest timestamp
that can be used to restore statistics

Data Dictionary and Historical Statistics Views
Oracle Database 11g provides different data dictionary views that you can use to
view historical statistics. These include:

 DBA_OPTSTAT_OPERATIONS ■ Contains a history of statistics-related
operations performed at the schema and database level

[DBA / ALL / USER]_TAB_STATS_HISTORY ■ Contains a history of table
statistics modifications

Extended Statistics
Oracle Database 11g provides the ability to gather additional statistics. These are
collectively known as extended statistics. Extended statistics include the
following:

 Multicolumn statistics ■

Expression statistics ■

Let’s look at each of these new statistic types in more detail next.

270 Oracle Database 11g New Features

Multicolumn Statistics
Prior to Oracle Database 11g Oracle had no way of understanding the relationship
of data within multiple columns of a where clause. Oracle Database 11g adds
multicolumn statistics to the mix to try to solve this problem. How do multicolumn
statistics work? Let’s look at an example. Suppose that in Oracle Database 10g we
had the following query:

Select count(*)
from employee
Where deptno=30;
 COUNT(*)

 6144

Now let’s add a predicate to the where clause to make it more selective:

Select count(*)
from employee

Arup Says…
As long as I remember, this has been a great debate in many forums—the
mailing lists, personal discussion forums, and now blogging—whether collection
of statistics on a regular basis is useful or not. Some argue that the periodic
collection of statistics enables the Cost-Based Optimizer (CBO) to gather more
accurate distribution of data to make a sensible decision about execution path,
while others argue that the repeated collection forces hard parses and might
create a suboptimal plan. Well, there is merit to both arguments. In the prior
versions, it has been always been my practice to export the statistics to a table
before collecting new stats. But there was this element of fear—what if the new
stats wreak havoc on my humming database? And the operations involved in
exporting the stats and importing them are not trivial.

Two eagerly awaited features ease that burden. One is what Robert has
described here—the decoupling of collection and publicizing of stats and
exposing them at will. This will allow you to collect stats when the system is least
used, for example, at night, but put off the parsing until a more opportune time.
Perhaps morning is not a good time to experiment with a new execution path. No
problem; collect the stats at night and publish them in the afternoon. Did
something go wrong? Just reinstate the older version. If you have time, you can
also reinstate the old version and replay the SQL code through SQL Performance
Analyzer to get a sense of how these stats are useful (or the contrary).

The second feature is SQL Plan Management, discussed later in this chapter.
SPM allows you to be protected from the potentially harmful execution paths
due to the newly collected stats.

Chapter 9: Performance Tuning 271

Where deptno=30
and job='SALESMAN';
 COUNT(*)

 4096

-- Execution Plan
--
| Id | Operation | Name | Rows | Bytes| Cost(%CPU)|
--
0	SELECT STATEMENT		1	11	5 (0)
1	SORT AGGREGATE		1	11	
* 2	INDEX RANGE SCAN	IX_EMPLOYEE	892	9812	5 (0)
--

But what about this case, where we query for a job that does not exist?

Select count(*)
from employee
Where deptno=30
and job='JANITOR';
COUNT(*)

 0
-- Execution Plan
--
| Id | Operation | Name | Rows | Bytes| Cost(%CPU)|
--
0	SELECT STATEMENT		1	11	5 (0)
1	SORT AGGREGATE		1	11	
* 2	INDEX RANGE SCAN	IX_EMPLOYEE	892	9812	5 (0)
--

Note that the execution plan has not changed at all. Oracle has no way of knowing
that the JOB column is querying a value that is not present. How can we provide
Oracle with better information so that it can know these columns are grouped
together, and so that it might generate an execution plan that more accurately
reflects the reality of the query? We can use multicolumn statistics.

Generate Multicolumn Statistics We generate multicolumn statistics by first
creating the column group, and then collecting statistics. We create the column
group with the dbms_stats.create_extended_stats call, as seen in this example
where we define the EMPLOYEE column group consisting of the DEPTNO and JOB
columns:

Declare
 cg_name varchar2(30);

272 Oracle Database 11g New Features

begin
 cg_name := dbms_stats.create_extended_stats(null,
 'EMPLOYEE','(DEPTNO, JOB)');
end;
/

Now that we have defined the column group, let’s collect the statistics for the table.
In this case, we will use the method_opt parameter of the dbms_stats.gather_table_
stats procedure to indicate that we want to collect statistics on the DEPTNO/JOB
column group:

begin
 dbms_stats.gather_table_stats(null,'EMPLOYEE',
 method_opt=>'for all columns size skewonly for columns (DEPTNO,JOB)');
end;
/

Alternatively you can use the method_opt option for all columns size auto to gather
statistics for all defined column groups. Now that we have collected the extended
multicolumn statistics, let’s look at the execution plan for our query:

--
| Id | Operation | Name | Rows | Bytes| Cost(%CPU)|
--
0	SELECT STATEMENT		1	11	2 (0)
1	SORT AGGREGATE		1	11	
* 2	INDEX RANGE SCAN	IX_EMPLOYEE	548	6028	2 (0)
--

Note that the number of rows reported by the optimizer has decreased significantly
in the index range scan. Since the index is built on DEPTNO and JOB, it’s still going to
have to scan down the DEPTNO rows, but now Oracle is aware that there are likely to
be few JOB entries because of the histogram built on the column pairing. Thus, the
number of rows returned that the plan reports is reduced.

NOTE
As with many new features, during testing, this
seemed to work in a somewhat hit-and-miss way.
The technical reviewer could never duplicate
the results I had. What is the moral of the story?
Carefully test all new features and make sure that
they are working, as you would expect.

Drop Multicolumn Statistics If you find you need to drop a column group that
you have previously defined, the dbms_stats.drop_extended_stats procedure

Chapter 9: Performance Tuning 273

can be used. Here is an example where I drop the column group for DEPTNO and
JOB that was created earlier:

Exec dbms_stats.drop_extended_stats('SCOTT', 'EMPLOYEE', '(DEPTNO,JOB)');

Multicolumn Statistics Dictionary Views You can use the [DBA / ALL / USER]_
STAT_EXTENSIONS data dictionary view to retrieve information on column groups
that have been created. Note the meaningful name (which we have no control over)
assigned to the extension in the EXTENSION_NAME column in this example (that’s
dripping sarcasm, just in case you were wondering):

Select extension_name, extension
from user_stat_extensions
where table_name='EMPLOYEE';
EXTENSION_NAME EXTENSION
------------------------------ ------------------------------
SYS_STU$7LJEWQEV#_NNT_P4FXAU5K ("DEPTNO","JOB")

Expression Statistics
Prior to Oracle Database 11g, if you included a function as a predicate in a select
statement, Oracle had no way of determining the selectivity of that function. In this
section we will look at why expression statistics are important and how to generate
expression statistics. We will then look at how to drop expression statistics and
review data dictionary views associated with expression statistics.

What’s the Big Deal Anyway? Assume that you had a table called EMPLOYEE
with a column called HOME_STATE that indicated the state that the employee lived
in. Here is a partial list of the distribution of the number of employees in each state:

Select home_state, count(*)
from employee
group by home_state;

HO COUNT(*)
-- ----------
ND 1
TX 15359

Note that in the state of TX (Texas) we have a large number of employees. In the
state of ND (North Dakota) we have one lonely (and probably very cold) employee.
Now assume that we have the following SQL statements:

Select count(*)
from employee
Where lower(home_state)='tx' and empno < 500;

274 Oracle Database 11g New Features

Select count(*)
from employee
Where lower(home_state)='nd' and empno < 500;

In the first statement, we would expect that a full table scan would likely be the best
way of getting at our data, and in the second we would assume that index access
(using a function-based index, of course) would be best.

In Oracle Database 10g and 11g by default we find the following execution
plans for both of these statements:

| Id | Operation | Name | Rows | Bytes

| 0 | SELECT STATEMENT | | 1 | 8
| 1 | SORT AGGREGATE | | 1 | 8
|* 2 | TABLE ACCESS BY INDEX ROWID| EMPLOYEE | 5 | 40
|* 3 | INDEX RANGE SCAN | PK_EMPLOYEE | 499 |

Note that these plans don’t even use our function-based index. Clearly the optimizer
in Oracle Database 10g is not up to determining the best way to access data when a
function is in use. Let’s see what happens in Oracle Database 11g.

Enter Expression Statistics Oracle Database 11g offers expression statistics to solve
this problem. First, we have to analyze the table, gathering specific expression
statistics on our object. We use the method_opt parameter to build these expression
statistics, as seen in this example:

Begin
 dbms_stats.gather_table_stats(null, 'EMPLOYEE',
 method_opt=>
 'for all columns size skewonly for columns (lower(home_state))');
end;
/

Now, when we run our queries, look how the execution plan changes:

Select count(*)
from employee
Where lower(home_state)='tx' and empno < 500;
--
| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT		1	15
1	SORT AGGREGATE		1	15
* 2	TABLE ACCESS FULL	EMPLOYEE	500	7500
--

Select count(*)
from employee
Where lower(home_state)='nd' and empno < 500;

Chapter 9: Performance Tuning 275

--
| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT		1	19
1	SORT AGGREGATE		1	19
* 2	TABLE ACCESS BY INDEX ROWID	EMPLOYEE	1	19
* 3	INDEX RANGE SCAN	FX_EMPLOYEE	1	
--

Looking at the later execution plan, clearly Oracle now knows that there are a lot of
‘tx’ rows, and is using a full table scan there. On the other hand, it also knows that
‘nd’ is a rare bird and is modifying the execution plan as a result of that. Also note
that the number of rows in the execution plan is being displayed properly.

NOTE
Of course, several factors can influence the
execution plan you get for any query. Here’s an
example in which two perfectly good new features
rather battle themselves. When I first executed the
query after analyzing the EMPLOYEE table with the
lower() function, I was still getting the index range
scan. I discovered that the main reason was that
I had a SQL baseline plan that was being picked
up and used (we will talk about SQL baselines
later in this chapter), which defeated my efforts.
Only after disabling SQL baselines for the session
(by setting the new parameter optimizer_use_sql_
plan_baselines to FALSE) did I get the plan I was
expecting! Fortunately, this problem only cost me
two laptops that I hurled from my office in total
frustration. It could have been much worse.

Drop Expression Statistics You use the dbms_stats.drop_extended_stats procedure
to drop extended expression statistics. Note that you will not be able to drop an
extended expression statistic if a function-based index is dependent on that statistic.
Here is an example of the removal of an extended expression statistic:

exec dbms_stats.drop_extended_stats(null,'EMPLOYEE','(LOWER("HOME_STATE"))');

NOTE
If you get an ORA-20000 error when you run this
command, this means that you have a function-based
index that depends on this extended statistic. You will
have to drop that index in order to drop the statistic.
The error text itself is not very helpful in this case.

276 Oracle Database 11g New Features

Expression Statistics Dictionary Views You can use the [DBA / ALL / USER]_STAT_
EXTENSIONS data dictionary view to retrieve information on expression statistics
that have been created in the database, as seen in this example:

Select extension_name, extension
from user_stat_extensions
where table_name='EMPLOYEE';

EXTENSION_NAME EXTENSION
------------------------------ ------------------------------
SYS_STU$7LJEWQEV#_NNT_P4FXAU5K ("DEPTNO","JOB")
SYS_NC00012$ (LOWER("HOME_STATE"))

PL/SQL Native Compilation
Oracle Database 11g has improved PL/SQL native compilation. First, you no longer
need a C compiler to use this feature. Also, while DLLs are still generated, they are
stored in the database and will load the DLL directly from the catalog. In some cases
Oracle says that you may see performance improvements over Oracle Database 10g
by as much as an order of magnitude. Here is an example of creating Oracle
Database 11g PL/SQL that is natively compiled:

Alter session set plsql_code_type=native;
Create or replace procedure hello_world as
begin
 Dbms_output.put_line('Hello World, I''m a native!');
End;
/
-- We can check the status by looking at dba_plsql_object_settings
select plsql_code_type from all_plsql_object_settings
where name='HELLO_WORLD';
PLSQL_CODE_TYPE

NATIVE

If you have a lot of PL/SQL in your database, you may want to recompile all of
the PL/SQL in the database using native compilation. Oracle provides a process that
you can use to do this. The steps in this process are

 1. Set the plsql_code_type parameter to NATIVE (alter system set plsql_code_
type=NATIVE).

 2. Shutdown the database (shutdown immediate).

 3. Startup the database in upgrade mode (startup upgrade).

Chapter 9: Performance Tuning 277

 4. Execute the script dbmsupgnv.sql in $ORACLE_HOME/rdbms/admin. This will
invalidate all of the PL/SQL programs units in the data dictionary, so utlrp.sql
will recompile them. You can choose to exclude package specifications when
you run this script. Personally I’d just recompile everything.

 5. Shutdown the database and restart in restricted mode (startup restrict).

 6. Execute the utlrp.sql script in $ORACLE_HOME/rdbms/admin.

 7. Disable restricted session after utlrp.sql completes (alter system disable
restricted session).

SQL Plan Management
SQL Plan Management is used to help improve the performance of SQL statements,
especially those that are executed frequently. In this chapter we will introduce you
to SQL Plan Management. First we will look at an overview of SQL Plan
Management. Next we will look at plan capture, including automated plan capture
and manual plan capture.

SQL Plan Management Overview
As SQL statements are executed, Oracle will record the SQL execution plans and
maintain a record of which are the most efficient. These plans are known as SQL plan
baselines, and these baselines are later used to ensure that system performance will
not be negatively impacted by changes that might occur in the system. For example,
if a given SQL statement runs subsecond with a given plan, and some change in the
system causes that plan to change such that it is no longer subsecond, Oracle will try
to revert to the baseline plan to preserve the performance of that SQL statement.

When Oracle captures a plan and determines that it is acceptable, then that plan
will be marked by the optimizer as accepted for use. Subsequent execution plans will

Arup Says…
This is perhaps one of the most useful features in this release. Native compilation
is not new; it was available in 9i R2. So, what is the big fuss? The major difference
between the previous version and this one is the need to have a C compiler.
The 11g version does not need a C compiler to be installed and defined in the
initialization parameter. Most shops loathe or downright prohibit installing a C
compiler on a production database for a variety of reasons, security being the
topmost, usually. So, even though native compilation was available, it was hardly
used. This version makes that feature truly accessible.

278 Oracle Database 11g New Features

be analyzed by Oracle Database, and if it is verified that the plan will not cause
negative performance, then that plan will be added to the SQL plan baseline. Plans that
are captured will “evolve” over time, as Automatic SQL Tuning tries to evolve the
plans, improving performance. Plans that you wish to remain unchanged can be marked
as fixed within the SQL Plan baseline, which will cause them to remain unchanged.

Plan Capture
Oracle Database provides two ways of capturing plans. The first is through the use
of the automatic plan capture facility. The second method is to manually load the
execution plans. In this section we will discuss both of these methods.

Automatic Plan Capture
Oracle provides a method of automatically capturing SQL execution plans. When
automatic plan capture is enabled, Oracle will create and maintain the SQL
execution plan history. Various information with regard to the plan is stored
including the SQL statement, the execution plan, bind variable information, and
other relevant information. Automatic plan capture is not enabled in Oracle
Database by default. The parameter optimizer_capture_sql_plan_baselines must be
set to true (alter system set optimizer_capture_sql_plan_baselines=TRUE) in order
to enable this feature (false is the default). This parameter is dynamic and can also
be set at the session level with the alter session command.

Manual Plan Loading
You can manually load SQL plans from several sources. These include:

 SQL Tuning Sets ■

AWR snapshots ■

The cursor cache ■

Let’s look at each of these methods of loading SQL plans in more detail next.

Loading a Plan Using a SQL Tuning Set Loading plans from a SQL Tuning Set
(discussed later in this chapter) is quite easy. You use the dbms_spm.load_plans_from_
sqlset function to load the SQL Tuning Set into SQL plan baselines (if the account is not
a DBA account, you will need the administer SQL management object privilege along
with the execute privilege on the dbms_spm package). The plans loaded are not
verified for performance and will be marked as accepted plans when loaded. In this
example we load SQL plans from the SQL Set Robert into SQL plan baselines:

Declare
My_plan_id pls_integer;

Chapter 9: Performance Tuning 279

begin
 my_plan_id:=dbms_spm.load_plans_from_sqlset(
 sqlset_name=>'Robert');
end;
/

NOTE
The dbms_spm.load_plans_from_sqlset function
provides options to filter plans from the SQL set using
the basic_filter parameter. Other options include
the ability to indicate if the plans are fixed, which
indicates that they cannot evolve over time. By
default plans are not fixed, and thus can evolve over
time through the Automatic SQL Tuning process.

Loading a Plan Using an AWR Snapshot You can load SQL plans from AWR
snapshots into SQL plan baselines. First you will need to convert the AWR snapshot
into a SQL Tuning Set (we discuss how to do this later in this chapter). Once the
tuning set is loaded, you can then create the SQL plan baselines as described in the
previous section.

Loading a Plan Using the Cursor Cache The dbms_spm.load_plans_from_cursor_
cache function provides the ability to create a SQL plan baseline from plans stored
in the cursor cache. You will need to query the SQL cache first to determine the
SQL_ID of the statement that you are interested in. You can then load that SQL
statement as a SQL plan baseline, referencing that SQL_ID.

Here is some PL/SQL that will find a specific SQL statement in the cursor cache
and load it in a SQL plan baseline:

Declare
 My_sql_plan pls_integer;
 v_sql varchar2(1000);
begin
 for dd in (select sql_id from v$sqlarea where
 sql_text like 'select * from scott.emp')
 loop
 if length(dd.sql_id) > 0
 then
 my_sql_plan:=dbms_spm.load_plans_from_cursor_cache
 (sql_id=>dd.sql_id);
 end if;
 end loop;
end;
/

280 Oracle Database 11g New Features

Use of SQL Plan Baselines
SQL plan baselines are used to avoid SQL plan degradation. When you issue a SQL
statement, Oracle will cost that statement using the CBO. Oracle will then compare
the cost of that statement against the SQL plan baseline, looking for a match. If it
finds a match, then the plan is considered acceptable.

If a match is not found, Oracle will compare the plan against the cost of each
accepted plan (plans are accepted using a process called evolving, which we will
discuss in the next section) that is present in the SQL plan baseline (of course, only
plans related to the SQL statement are considered). If a plan with a lower cost is
found in the SQL plan baseline, then that plan will be used instead of the one
generated by the CBO. If a plan with a lower cost is not found, then the newly
generated plan will be stored in the SQL plan baseline and it will not be used until it
has been accepted. In this case, the lowest-cost plan, with an accepted status, will
be used from the SQL plan baseline. If there is no acceptable plan in the SQL plan
baseline, then the generated plan will be used.

You may decide, after testing, that you don’t want to use SQL plan baselines. If
this is the case, simply set the parameter optimizer_use_sql_plan_baselines to false.
This parameter can be set at either the session or database level. Note that the use of
SQL plan baselines can sometimes be confusing when you are trying to tune SQL
statements (see a perfect example of this earlier in this chapter).

Querying SQL Plan Baselines
You can query SQL plan baseline information via the DBA_SQL_PLAN_BASELINES
view (there is no ALL or USER view available) as seen in this example:

Select sql_handle, plan_name, accepted, version
from dba_sql_plan_baselines
where creator='SCOTT'
and dbms_lob.substr(sql_text, 34,1)='select * from emp where empno=7369';

SQL_HANDLE PLAN_NAME ACC
------------------------------ ------------------------------ ---
VERSION
--
SYS_SQL_353e8c17a551f70c SYS_SQL_PLAN_a551f70c695cc014 YES
11.1.0.6.0

In this case, there is just one baseline plan for this query. There is just one plan
for now, and it is accepted (and thus, it will always be used as long as it is the
lowest-cost plan that is accepted).

Now that you have identified the SQL plan baseline for a given SQL statement,
you can look at the execution plan of that statement. The dbms_xplan PL/SQL
package now adds the display_sql_plan_baseline call, which will show you the
current execution plan for a given SQL_HANDLE (which we found via the call to

Chapter 9: Performance Tuning 281

the DBA_SQL_PLAN_BASELINES view in the preceding code). Here is an example
of using dbms_xplan.display_sql_plan_baseline to get the execution plan:

Select * from table (dbms_xplan.display_sql_plan_baseline -
 (sql_handle=>'SYS_SQL_353e8c17a551f70c',format=>'basic'));

PLAN_TABLE_OUTPUT
--
SQL handle: SYS_SQL_353e8c17a551f70c
SQL text: select * from emp where empno=7369
--
Plan name: SYS_SQL_PLAN_a551f70c695cc014
Enabled: YES Fixed: NO Accepted: YES Origin: AUTO-CAPTURE
--
Plan hash value: 2949544139
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	TABLE ACCESS BY INDEX ROWID	EMP
2	INDEX UNIQUE SCAN	PK_EMP
--

A few things to note from the preceding code. First, note that the plan is enabled,
which means that Oracle will use that plan. Note that the plan is not fixed. Enabled
and fixed plans will be used in preference to enabled and not fixed. Manually loaded
plans are automatically fixed. Oracle will mark plans as fixed when they are evolved
(see the next section). If a plan is fixed, the optimizer will not add new plans to that
fixed SQL plan baseline. Also, if the plan is fixed, no new plan will be evolved either.
When a SQL statement is tuned with the SQL Tuning Advisor or Automatic SQL
Tuning, new plans can be added to the fixed SQL plan baseline. You can alter the
fixed attribute via the dbms_spm.alter_sql_plan_baseline function.

NOTE
From testing, it appears that if there is a change in
the dependent objects in the query (for example, an
index is dropped), the stored plans are dynamically
regenerated, and accepted, at the time the object is
dropped or added. This behavior does not appear
to be documented anywhere in the current Oracle
Database 11g documentation. For example, if I drop
the PK_EMP index, the baseline plan is changed
dynamically, removing the index unique scan and
replacing it with a full table scan.

282 Oracle Database 11g New Features

Evolving SQL Plan Baselines
You probably noticed that when SQL plan baselines are in use, a new CBO plan
will not get used right off the bat (unless it’s the only CBO plan, or other plans have
been invalidated). This is good, because it avoids plan regression. It’s not so good
because if the plan is a better one, it’s not going to get used since it must first be
accepted. So, how do we accept, or evolve, SQL plans? There are three ways a plan
can be evolved:

 When the plan is manually loaded to the SQL plan baseline ■

When a SQL plan baseline plan is manually evolved ■

Via Automatic SQL Tuning ■

We discussed manual plan loading into the SQL plan baseline already in this
chapter (see the section titled “Manual Plan Loading”). When plans are manually
loaded, they will be set as accepted in the SQL plan baseline, and thus those plans
are available for use.

NOTE
A plan is considered evolved when an unaccepted
plan is changed into an accepted plan.

If a plan is already in the SQL plan baseline, then we can use the PL/SQL
function dbms_spm.evolve_sql_plan_baseline to verify the performance of the plan,
and then accept it if the performance is acceptable. Here is an example of evolving
a baseline plan using the dbms_spm.evolve_sql_plan_baseline function:

Set serveroutput on
set long 100000
Declare
 Output_report clob;
begin
 output_report:=dbms_spm.evolve_sql_plan_baseline(
 sql_handle=>'SYS_SQL_353e8c17a551f70c');
 dbms_output.put_line(output_report);
end;
/

Note that options exist when evolving the SQL Plan Baseline to not verify the
plan (and thus it will be accepted without determining the performance aspects of
the new plan). You can also choose to not change the status of the plan to
ACCEPTED if you prefer.

Chapter 9: Performance Tuning 283

The result of the execution of the dbms_spm.evolve_sql_plan_baseline will be a
report on the plans, comparison statistics on the different plans considered for
evolving, and whether the plans were evolved or not.

NOTE
When you use autotrace, you can tell if a baseline
is being used. You will see the following note in the
autotrace output:

- SQL plan baseline "SYS_SQL_PLAN_
a3185cea611ea913" used for this statement

Managing SQL Plan Baselines
As you might expect, cases will arise where you need to manage SQL plan baselines.
In this section we will discuss the use of the dbms_spm.alter_sql_plan_baseline
function and the dbms_spm.configure procedure. We will then look at the dbms_spm
.drop_sql_plan_baseline procedure, which you can use to drop SQL plan baselines.

Using dbms_spm.alter_sql_plan_baseline
You may wish to change the attribute of baseline plans from time to time. This can
be done with the dbms_spm.alter_sql_plan_baseline procedure. With this
procedure you can

 Enable or disable a baseline plan for use ■

Fix the SQL plan so that it does not evolve over time ■

Enable or disable purging of plans ■

For example, let’s look at this baseline plan for a SQL statement:

Select sql_handle, plan_name, accepted, fixed
from dba_sql_plan_baselines
where creator='SCOTT'
and dbms_lob.substr(sql_text, 34,1)='select * from emp where empno=7369';
SQL_HANDLE PLAN_NAME ACC FIX
------------------------------ ------------------------------ --- ---
SYS_SQL_353e8c17a551f70c SYS_SQL_PLAN_a551f70c695cc014 YES NO

Here we have a plan that is not fixed (the FIX column is set to NO). Let’s mark
the first plan as fixed:

Declare
 v_number pls_integer;

284 Oracle Database 11g New Features

Begin
 v_number:=dbms_spm.alter_sql_plan_baseline(
 sql_handle=>'SYS_SQL_353e8c17a551f70c',
 plan_name=>'SYS_SQL_PLAN_a551f70c695cc014',
 attribute_name=>'FIXED',
 attribute_value=>'YES');
end;
/

Now, let’s see the results. Note that the fixed attribute (FIX) is now set to YES:

Select sql_handle, plan_name, accepted, fixed
from dba_sql_plan_baselines
where creator='SCOTT'
and dbms_lob.substr(sql_text, 34,1)='select * from emp where empno=7369';
SQL_HANDLE PLAN_NAME ACC FIX
------------------------------ ------------------------------ --- ---
SYS_SQL_353e8c17a551f70c SYS_SQL_PLAN_a551f70c695cc014 YES YES

Now this plan is fixed and will be used in lieu of plans that are not fixed, or new
optimizer plans.

NOTE
You may have wondered about hints. Hints will
override SQL Plans, since they end up with a different
hash value. As a result, they will have their own
baseline plan.

Using dbms_spm.configure
SQL baseline information is stored in a structure that Oracle calls the SQL
Management Base (SMB). The SMB is located in the SYSAUX tablespace. Oracle
provides the dbms_spm.configure procedure to manage the SMB. Using this
procedure you can configure the amount of space that can be consumed by SQL
plan baselines and how long plans will be retained for. By default the default
amount of space that can be used by SQL Plan Management is no more than
10 percent of the size of the SYSAUX tablespace. You can adjust this up to a value
of 50 percent of the SYSAUX tablespace size. Baseline plans that are unused will be
retained for one year and one week, and then will be automatically purged. You
can opt to retain unused plans for 523 weeks. In the following example we have
modified the space budget to 20 percent of the SYSAUX tablespace and configured
unused plans to be removed after 30 weeks:

Exec dbms_spm.configure('space_budget_percent',20);
Exec dbms_spm.configure ('plan_retention_weeks',30);

You can query the DBA_SQL_MANAGEMENT_CONFIG data dictionary view to
determine the current configuration of the SMB.

Chapter 9: Performance Tuning 285

Using dbms_spm.drop_sql_plan_baseline
You can drop SQL plan baselines with the dbms_spm.drop_sql_plan_baseline
function. You simply pass it the SQL_HANDLE and the PLAN_NAME and it will
remove the plan (either of these has defaults, so you can remove all plans with the
same SQL_HANDLE or the same PLAN_NAME). The function will return the
number of plans that were removed. Here is an example of the use of dbms_spm
.drop_sql_plan_baseline:

Declare
 v_plans_dropped pls_integer;
Begin
 v_plans_dropped:=dbms_spm.drop_sql_plan_baseline(
 sql_handle=>'SYS_SQL_353e8c17a551f70c',
 plan_name=>'SYS_SQL_PLAN_a551f70c695cc014');
end;
/

Arup Says…
After reading this section you must be wondering how this is different from other
plan stabilization techniques like stored outlines and SQL Profiles, which also
provide a fixed plan for a specific SQL statement. Good question, and there is an
equally good answer. Stored outlines are fixed for the SQL statement for life;
they are not affected by changes in data distribution and other variables such as
optimizer_index_cost_adj. This will work in most cases, but in some cases you
actually lose. Consider the example of selecting from a 1-million-row customer
table where country_code = ‘US’, which is probably the biggest chunk of the
table, and an index should not be used. However, when the country_code is set
to, say, Luxemburg, there are only a few records and the index should be used.
A stored outline is fixed with full table scans, and that will be the case in all
cases, which hurts the Luxemburg queries.

SQL Plan Management differs by developing a new plan, but making it
available only if the new plan is superior to the old one. So, the plan is fixed for
the SQL statement, but that plan changes if a need arises. Consider it sort of a
constantly evolving stored outline.

SQL Profiles are also fixed, but unlike outlines, they are dependent on the
data distribution among the tables and how the query affects it. Once set, they
also attach themselves to the SQL statement. What if the data distribution pattern
changes? For instance, suddenly you may find that 99 percent of your customers
are from Luxemburg while fewer than 1 percent are from the U.S. A profile that
was generated earlier will not know this change in pattern unless you drop
the profile and run SQL Tuning Optimizer once again. SQL Plan Management
takes care of that by constantly evaluating the statements that may benefit from a
plan change.

286 Oracle Database 11g New Features

Automatic SQL Tuning
Oracle Database 10g introduced the SQL Tuning Advisor to help you tune SQL
statements for better performance. The main problem with using the SQL Tuning
Advisor was that it required a manual process. Additionally there was some
disconnect between the SQL Tuning Advisor and ADDM that would sometimes
require more manual work to analyze SQL identified by ADDM. Associated with
SQL Plan Management is Automatic SQL Tuning. Let’s look at Automatic SQL
Tuning in more detail. First I will provide an overview of Automatic SQL Tuning.
Then we will discuss configuration and management of Automatic SQL Tuning.

Overview of Automatic SQL Tuning
Oracle Database 11g improves on the SQL Tuning Advisor by automating the
identification of problem SQL. Now, SQL statements are identified automatically, the
SQL Tuning Advisor is executed automatically during the scheduled maintenance
window on those SQL statements and SQL Baseline Profiles are created. To identify
SQL statements the AWR is used. Top queries from the previous week are reviewed
for tuning. There are four basic query “buckets” that are selected:

 Top queries for the past week ■

Top queries for any day in the past week ■

Top queries for any hour ■

Top queries by average single execution ■

The queries collected are combined into a single result, and are then weighted.

NOTE
The Automatic SQL Tuning Tasks will not detect all
of your problem SQL statements. SQL that is rarely
executed (such as ad-hoc SQL), parallel queries,
recursive SQL, and DML/DDL are examples of SQL
that will not be analyzed. Also if your system has a
lot of SQL that repeats with literals instead of bind
variables, the Automatic SQL Tuning may not detect
these SQL statements. Also note that Automatic SQL
Tuning will ignore long-running queries if they have
been initially profiled, but the performance is not
improved after profiling. In cases where Automatic
SQL Tuning does not tune a specific SQL statement,
you can still manually tune these statements with the
SQL Tuning Advisor.

Chapter 9: Performance Tuning 287

Supporting Automatic SQL Tuning is the optimizer. The optimizer now runs in
two different modes. First is the mode you are most acquainted with, the normal
mode. This is the mode that the optimizer runs in when you execute a SQL statement,
and the optimizer generates a plan for that statement.

The optimizer now runs in another mode called tuning mode. In tuning mode,
the optimizer will look at SQL statements that run in the system historically, and
analyze them to determine if tuning recommendations can be generated for those
SQL statements. The result of this tuning exercise will be a profile. This tuning is
done during the system maintenance window as an automated task and will run by
default for only one hour (minimizing overall system impact).

When running in tuning mode, Automatic SQL Tuning performance these four
basic steps:

 1. Identify SQL candidates for tuning from the AWR.

 2. Tune each SQL statement by calling the SQL Tuning Advisor and generate
a resulting profile.

 3. Test the SQL profiles generated by executing the SQL statement. Determine
if the profile generated in step 2 is accepted.

 4. Implement the SQL profiles if they meet the accepted implementation
criteria.

Note in step 2 that the Automatic SQL Tuning process calls the optimizer to tune
the SQL. The optimizer in tuning mode will perform four different kinds of tuning
analysis on selected SQL statements:

 ■ Statistical Analysis This is used to determine the freshness of statistics on
the underlying objects used by the query. The resulting information from
this check may be specific recommendations for gathering statistics and/or
collection of “auxiliary information” on the objects being analyzed. This
auxiliary information will get stored in the relevant profile generated for the
SQL statement by the optimizer.

SQL Profiling ■ During SQL profiling, the optimizer will use all available
information on the object associated with the SQL statement to generate
a SQL profile. This information includes the normal statistics gathered for
the object, but also additional statistics and analytical calculations that are
possible during a more intense profiling of a SQL statement.

Access Path Analysis ■ The automatic tuning analyzer will analyze the SQL
statement and make recommendations if additional indexing would be
helpful. The SQL Access Advisor will review the index recommendation and
determine it’s overall impact on the system.

288 Oracle Database 11g New Features

SQL Structure Analysis ■ This analysis reviews the structure of SQL statements
and determines if changes to the structure of the SQL statement could
improve its performance.

Once a profile is generated, it is tested by Oracle Database 11g to ensure that it
improves performance and is then implemented automatically. Oracle Database 11g
requires a minimum of a 3x performance improvement before it will automatically
implement the profile; therefore, the improvement must be significant before it will
be implemented. The DBA_SQL_PROFILES column STATUS will be set to AUTO-
TUNE if the Automatic SQL Tuning process created them.

As mentioned earlier, the Automated Tuning Advisor tasks will also provide
recommendations with regard to new indexes, and other tuning changes that might
help your SQL statement perform better. These recommendations are not implemented
automatically but can be reviewed and implemented through OEM or using the
various views available with the Advisor framework.

Oracle provides for reporting of these automated activities. You can check on
which SQL Profiles have been generated and validate or remove any generated
SQL profile. All this automation is facilitated with the AutoTask framework
discussed in Chapter 2 and thus this process runs nightly.

There are cases where a given SQL statement might be tuned to optimum
performance, but over time conditions change with the underlying data, such that
the SQL statement is no longer efficient when using the created SQL profile. The
SQL Tuning Advisor will detect these regressively performing statements and retune
them for better performance. This way, your SQL statements continue to perform
optimally over time.

Automatic SQL Tuning with OEM
Oracle Database 11g provides the ability to easily interface with Automatic SQL
Tuning via OEM. To begin click on the Advisor Central link on the OEM home page.
From the Advisor Central home page you will see a list of the different advisors that
have run (by default the last runs of the individual advisors are displayed). To
manage the Automatic SQL Tuning Advisor or review its results, click on the radio
button by the SQL Tuning Advisor and click on the View Result button (Figure 9-1).
OEM will provide the Automatic SQL Tuning Result Summary page (Figure 9-2).

Note in the Task Status region of the Automatic SQL Tuning Result Summary
Page, you can enable or disable Automatic SQL Tuning by clicking on the configure
button which takes you to the Automated Maintenance Tasks Configuration page
(Figure 9-3). From the configure page you can turn off Automatic SQL Tuning or
choose which day you wish Automatic SQL Tuning to be run.

Note that you could opt to look at a previous run from this page if you wanted.
You can look at all runs for a specific advisor. You can also look at the last runs
over a specific period of time (the last 24 hours, seven days, or all of the runs).

Chapter 9: Performance Tuning 289

Other filter criteria include the task name and the status of the task. Notice another
configure button on the Automated Maintenance Tasks Configuration Page. This
provides the ability to further manage Automatic SQL Tuning. You can configure
things like the maximum time spend on a specific SQL during SQL tuning and so
on. This Automatic SQL Tuning Settings page can be seen in Figure 9-4.

Returning to the Automatic SQL Tuning Result Summary page (back to Figure 9-1),
still on the Task Status Region you will see that Oracle lists the number of Highly
Recommend SQL Profiles that it has created. You can choose to implement all of the
highly recommended SQL Profiles by clicking on the Implement All button.

If you are perhaps a bit less than willing to just trust Oracle, you can view the
SQL Profiles that are recommended. You do this from the Task Activity Summary
region in the Automatic SQL Tuning Result Summary Page (again, Figure 9-1). You
can view a specific report (such as the last one executed), a time period (such as the
last week) or view a report for all runs of the Automatic SQL Tuning Advisor. You
can click on the Time Period you wish and then click on the View Report button to

FIGURE 9-1. OEM SQL Tuning Advisor results page from Advisor Central

290 Oracle Database 11g New Features

bring up the Automatic SQL Tuning Result Details page seen in Figure 9-5. From
this page you can view specific recommendations for a given SQL statement
and implement specific SQL profiles generated by Automatic SQL Tuning.

Looking more at the Automatic SQL Tuning Result Details page (Figure 9-5) note
that the Automatic Tuning Advisor provides us with a wealth of recommendations
beyond just adding SQL Profiles. It will let us know if statistics are stale (in which
case the statistics box would be selected), if we need to add indexes, if there are
recommendations to rewrite the SQL, and other recommendations.

NOTE
It is perhaps a bit disheartening that the Oracle-
related schemas (like SYS) come up with so many
SQL Tuning Advisor recommendations.

FIGURE 9-2. OEM Automatic SQL Tuning Result Summary page

Chapter 9: Performance Tuning 291

Manage Automatic SQL Tuning Manually
I’ll be honest: When someone tells me they are automating something, my first
thought as a DBA is, how do I control this thing? This thought is followed shortly by
the question, how do I turn this thing off if I need to? You might also wonder how
you monitor what it’s doing. Oracle Database 11g makes it easy to manually
manage and report on Automatic SQL Tuning. In this section we will discuss
enabling and disabling Automated SQL Tuning.

Enable and Disable Automatic SQL Tuning
You can manually turn Automatic SQL Tuning on or off as you wish using the
dbms_auto_task_admin.disable or dbms_auto_task_admin.enable procedures from
the SQL prompt, as seen here:

-- Disable
BEGIN
dbms_auto_task_admin.disable(client_name => 'sql tuning advisor',

FIGURE 9-3. OEM Automated Maintenance Tasks Configuration page

292 Oracle Database 11g New Features

operation => NULL, window_name => NULL);
END;
/
-- Enable
BEGIN
dbms_auto_task_admin.enable(client_name => 'sql tuning advisor',
operation => NULL, window_name => NULL);
END;
/

Automatic profile implementation can also be disabled via the supplied PL/SQL
procedure dbms_sqltune.set_tuning_task_parameter as seen in this example (we
will discuss other parameters that can be set through a call to dbms_sqltune.set_
tuning_task_parameter later in this section:

--Disable
BEGIN
dbms_sqltune.set_tuning_task_parameter('SYS_AUTO_SQL_TUNING_TASK',

FIGURE 9-4. OEM Automated Maintenance Tasks Configuration page

Chapter 9: Performance Tuning 293

'ACCEPT_SQL_PROFILES', 'FALSE');
END;
/
-- Enable
BEGIN
dbms_sqltune.set_tuning_task_parameter('SYS_AUTO_SQL_TUNING_TASK',
'ACCEPT_SQL_PROFILES', 'TRUE');
END;
/

NOTE
If statistics_level is set to basic or you turn off AWR
snapshots or you modify AWR snapshot retention
to < 7 days, this will also disable Automatic SQL
Tuning.

FIGURE 9-5. OEM Automatic SQL Tuning Result Details page

294 Oracle Database 11g New Features

Accept Automatic SQL Tuning Generated Profiles
You can manually accept a recommended SQL profile using the supplied PL/SQL
function dbms_sqltune.accept_sql_profile as seen in this example:

DECLARE
 my_sqlprofile_name VARCHAR2(30);
BEGIN
 my_sqlprofile_name := DBMS_SQLTUNE.ACCEPT_SQL_PROFILE (
 task_name => 'ROBERTS_TASK',
 name => 'PROFILE_001',
 force_match => TRUE);
END;
/

You can also alter SQL profiles using the dbms_sqltune.alter_sql_profile supplied
PL/SQL procedure, as seen in this example that disables a given profile (you can
find profile information in the DBA_SQL_PROFILES view):

BEGIN
 DBMS_SQLTUNE.ALTER_SQL_PROFILE(
 name => 'PROFILE_001',
 attribute_name => 'STATUS',
 value => 'DISABLED');
END;
/

Finally you can drop SQL profiles manually with the dbms_sqltune.drop_sql_
profile supplied PL/SQL procedure, as seen here:

BEGIN
 DBMS_SQLTUNE.DROP_SQL_PROFILE(name => 'PROFILE_001');
END;
/

The dbms_sqltune PL/SQL procedure provides a number of other procedures
and functions that allow you to manually customize the work you want to do with
the SQL Tuning Sets. Check out the Oracle Database Performance Tuning Guide for
more in-depth examples.

Configure Automatic SQL Tuning
Several parameters can be configured that control the way that Automatic SQL
Tuning works. You can use the PL/SQL procedure dbms_sqltune.set_tuning_task_
parameter procedure to set the different parameters associated with Automatic SQL
Tuning. The procedure takes the following parameters:

 Task_name ■ For auto tuning tasks this is always SYS_AUTO_SQL_
TUNING_TASK

Chapter 9: Performance Tuning 295

Parameter ■ Defines the parameter you want to set. Parameters include the
following:

 Accept_sql_profile ■ When set to true (the default) will allow the SQL
Tuning Advisor to accept a given SQL profile automatically (that meets the
performance requirements). A value of false will disallow any profile being
set automatically.

 Max_sql_profiles_per_exec ■ Defines the limit of SQL profiles that are
accepted for each Automatic SQL Tuning run.

 Max_auto_sql_profiles ■ Defines the maximum number of SQL profiles that
can be accepted in total.

 Execution_days_to_expire ■ Defines the number of days to save task history
in the advisor framework schema. By default task history expires after 30 days.

Value ■ The value that you wish to set this particular parameter too.

Here is an example of setting the accept_sql_profile attribute:

BEGIN
 DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER(
 task_name => 'SYS_AUTO_SQL_TUNING_TASK',
 parameter => 'ACCEPT_SQL_PROFILES', value => 'TRUE');
END;
/

Automatic SQL Tuning Manual Reporting
If you are an old command line type like I am, then you want to do some good old-
fashioned manual reporting on things. Oracle Database 11g provides the Automatic
SQL Tuning Report which provides information on executions of the SQL Tuning
Advisor. You generate the report using the PL/SQL function dbms_sqltune.report_
auto_tuning_task, which returns the report in the form of a clob. Here is an example
of the generation of a report for tasks from today back in time to two days ago:

variable my_rept CLOB;
BEGIN
 :my_rept :=DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK(
 begin_exec => sysdate - 2,
 end_exec => sysdate,
 type => 'TEXT',
 level => 'TYPICAL',
 section => 'ALL',
 object_id => NULL,
 result_limit => NULL);
END;
/
print :my_rept

296 Oracle Database 11g New Features

Manual Creation and Use
of SQL Tuning Sets
As we mentioned earlier, the advisors in Oracle Database 10g use SQL Tuning Sets
instead of SQL workloads. SQL Tuning Sets can be created via OEM, of course, but
you may also want to create them manually. There are a number of ways to do this,
but we thought we would give you a quick highlight of one method. If you need to
investigate this further, the Oracle Database Performance Tuning Guide is very
helpful. The basic steps for the creation of a SQL tuning set are

 1. Create the task that the SQL Tuning Set will be associated with (such as a
SQL Access Advisor task).

 2. Create the SQL Tuning Set.

 3. Load the SQL Tuning Set.

 4. Link the SQL Tuning Set to the task created in Step 1.

 5. Set any task parameters.

 6. Execute the task.

 7. View the results.

Let’s look at these steps in some more detail.

Create the Task
This step is pretty much the same as in Oracle Database 10g. In this example we are
creating a SQL Access Advisor task.

-- Create the SQL Access Advisor Task
VARIABLE task_id NUMBER;
VARIABLE task_name VARCHAR2(255);
EXECUTE :task_name := 'ROBERTS_TASK';
-- This next command will fail if this is running for the first time.
EXECUTE DBMS_ADVISOR.DELETE_TASK (:task_name);
EXECUTE DBMS_ADVISOR.CREATE_TASK ('SQL Access Advisor', :task_id, :task_name);

Create the SQL Tuning Set
Next, we need to create the SQL Tuning Set. This is like creating a container, and
for right now it will contain nothing. In the next section we will load up the SQL
Tuning Set. In this example we will create a SQL Tuning Set called sqltuningset_001.

Chapter 9: Performance Tuning 297

We use the new Oracle supplied procedure dbms_sqltune.create_sqlset to create
the SQL Tuning Set:

-- Drop the SQLSET if it exists. Will generate an error if it
-- does not exist.
BEGIN
 DBMS_SQLTUNE.DELETE_SQLSET(sqlset_name => 'SQLTUNINGSET_001',
 sqlset_owner=>'ROBERT');
END;
/
-- Create the SQL tuning set
BEGIN
 DBMS_SQLTUNE.CREATE_SQLSET(sqlset_name => 'SQLTUNINGSET_001');
END;
/

We can see the newly created SQL Tuning set using the DBA_SQLSET view:

select name, owner from dba_sqlset
where name='SQLTUNINGSET_001';
NAME OWNER
------------------------------ --------
SQLTUNINGSET_001 ROBERT

Load the SQL Tuning Set
After creating the SQL Tuning Set, we need to load it with some content. There are a
number of different ways to do this including loading from baselines, the AWR,
another SQL Tuning Set, or the cursor cache. In our example we are going to load it
from a SQL baseline (see Chapter 2 for more on SQL baselines) called system_
baseline. Note that we are using a table function called dbms_sqltune.select_
workload_repository. This allows us to query the AWR and query only the
information in the AWR that we are interested in. In this case, we are going to query
for the baseline called system_baseline. We are going to query only the top 20
statements sorted by elapsed time:

-- PL/SQL to load the SQL Tuning Set from an AWR baseline
DECLARE
 baseline_cursor DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 OPEN baseline_cursor FOR
 SELECT VALUE(p)
 FROM TABLE (DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(
 'system_baseline', NULL, NULL, 'elapsed_time', NULL,
 NULL, NULL, 20)) p;
 DBMS_SQLTUNE.LOAD_SQLSET(

298 Oracle Database 11g New Features

 sqlset_name => 'SQLTUNINGSET_001',
 populate_cursor => baseline_cursor);
END;
/

You can see the SQL statements loaded in the SQL Tuning Set once it’s loaded,
by using the following query:

SELECT SQL_TEXT FROM TABLE(DBMS_SQLTUNE.SELECT_SQLSET('SQLTUNINGSET_001'));

Note that this uses another table function to easily provide you with the data
you are interested in. You could also refer to the DBA_SQLSET, DBA_SQLSET_
STATEMENTS, and DBA_SQLSET_BINDS views for this and additional information
on the SQL tuning set you have just created.

Link the SQL Tuning Set and the Task
We now have a SQL Access Advisor task and a SQL Tuning Set ready to go. We just
need to link the two together and then execute the task. We use the dbms_advisor
.add_sts_ref supplied PL/SQL procedure to do just that as seen here:

-- Link to tuning set to the task
EXECUTE DBMS_ADVISOR.ADD_STS_REF('ROBERTS_TASK', null, 'SQLTUNINGSET_001');

Set Any Task Parameters
Any task you run may have certain parameters that can be set to define, for the task,
what kind of information you are looking for. For example, we would like our task
to only report any valid information of a specific table, ROBERT.MY_TAB. We make
a call to the PL/SQL supplied procedure dbms_advisor.set_task_parameter to set
just a condition:

-- set task parameters
BEGIN
 DBMS_ADVISOR.SET_TASK_PARAMETER ('ROBERTS_TASK',
 'VALID_TABLE_LIST', 'ROBERT.MY_TAB');
END;
/

Execute the Task
Finally, after all the setup work is complete, we can execute the task using the PL/
SQL provided procedure dbms_advisor.execute_task as seen in this example:

-- Execute the task
EXECUTE DBMS_ADVISOR.EXECUTE_TASK('ROBERTS_TASK');

Chapter 9: Performance Tuning 299

Review the Results
Once the task has been executed, you probably would like to see some results.
Again, OEM provides an easy graphical interface into the results as we have
demonstrated in earlier sections of this chapter. If you want to manually view the
results you can view the recommendations that have been generated by the task
through a call to the [DBA|USER]_ADVISOR_RECOMMENDATIONS view as seen
in this example:

VARIABLE workload_name VARCHAR2(255);
VARIABLE task_name VARCHAR2(255);
EXECUTE :task_name := 'ROBERTS_TASK';
SELECT REC_ID, RANK, BENEFIT
FROM DBA_ADVISOR_RECOMMENDATIONS WHERE TASK_NAME = :task_name;

Oracle provides other views that you can use as required. These views include:

 DBA_ADVISOR_EXECUTIONS ■ Provides information on specific advisor
task executions.

DBA_ADVISOR_FINDINGS ■ Provides findings related to a specific advisor
task execution.

DBA_ADVISOR_RECOMMENDATIONS ■ Provides recommendations
related to a specific advisor task execution.

DBA_ADVISOR_RATIONALE ■ Provides the rationale for specific findings
of a given advisor task execution.

DBA_ADVISOR_TASKS ■ Provides a parent record for each advisor task.
Can be executed many times (seen in DBA_ADVISOR_EXECUTIONS).

Arup Says…
One of the best usages of the SQL Tuning Advisor I found was to combine it
with the SQL Performance Analyzer. Get the recommendations from the STA
and then run these in the SPA to get a side-by-side comparison of the before
and after change scenarios. Not only will you see the recommendations, but
you will be able to run them on your actual system for a genuine impact
analysis. For an even better comparison, use Database Replay to capture a
significant workload and then run it in the replay with the recommended
changes in place, to measure the impact. This allows you to assess the impact
not only on specific SQL statements, but on a whole range of other SQL
statements as well.

300 Oracle Database 11g New Features

Intelligent Cursor Sharing
(Bind-Aware Peeking)
In the past, cursor sharing has struggled when bind variables were used. This is
because different bind variable values could have different selectivity, and thus might
well require different execution plans. Oracle Database 11g introduces intelligent
cursor sharing (also known as bind-aware peeking), which is an extension of cursor
sharing and bind variable peeking. In this section we will look at what bind-aware
peeking is, and look at data dictionary views associated with bind-aware peeking.

NOTE
Don’t confuse cursor sharing with intelligent cursor
sharing. Intelligent cursor sharing is independent of
cursor sharing and is not impacted by the setting of
the cursor_sharing parameter.

About Bind-Aware Peeking
Bind-aware peeking provides Oracle with the ability to determine the selectivity of
any where clause condition that uses bind variables. Unlike cursor sharing in the
past, bind-aware peeking is a more intelligent approach to cursor sharing in that it
allows for multiple execution plans for a single SQL statement using bind variables.
Intelligent cursor sharing cannot be disabled.

A cursor that uses bind variables will start its life with a hard parse, as would be
expected. Bind variable peeking will be used and a histogram is used to compute
the selectivity of the predicate. A selectivity cube will be generated (this can be seen
in V$SQL_CS_SELECTIVITY).

When a subsequent execution occurs, the statement will be soft-parsed and the
matching cursor and execution plan found. After the execution, the execution
statistics of the run will be compared to the previous execution statistics for that
cursor. Oracle will monitor the pattern of the statistics as SQL runs progress, and if
Oracle finds that the cursor will benefit from being bind-aware (because of the
pattern of usage of that cursor and the overall selectivity of the executions of that
cursor overt time), it will mark the cursor as bind-aware.

On the following query executions, the query will still be soft-parsed. However,
Oracle will review the selectivity of the predicate since it is now marked for cursor
matching. The selectivity of the predicate will be determined, and the appropriate
stored execution plan (or a new execution plan if required) will be generated. Note
that one result of intelligent cursor sharing, then, is that a given SQL statement could
end up with more than one execution plan depending on the history of past
executions and the use of the bind variables.

Chapter 9: Performance Tuning 301

Bind-Aware Peeking Views
There are four views that can be used to monitor bind-aware peeking. Three of these
views are new. The new views are

 The V$SQL_CS_STATISTICS view provides execution statistics on shared ■
cursors, including information on whether the cursor has been peeked, how
many executions there were for the cursor and so on. This view can be used
to determine performance, comparing cursor performance with different
bind sets.

The V$SQL_CS_SELECTIVITY view materializes the selectivity cubes created ■
by Oracle for each predicate in the SQL statement.

The V$SQL_CS_HISTOGRAM view displays the distribution of the execution ■
count across a three-bucket execution history histogram.

Additionally the V$SQL view has two new columns added:

 IS_BIND_SENSITIVE ■ This column indicates if the cursor is bind-sensitive.
If set to YES, then the column is bind-sensitive. If a cursor is marked bind-
sensitive, then this indicates that the optimizer peeked at the bind variable
values and has determined that changes to the bind variable may lead to a
need to a different plan.

IS_BIND_AWARE ■ This column indicates if a given cursor is bind-aware. If
set to YES, this cursor will use bind-aware cursor sharing.

NOTE
In the early documentation the V$SQL_CS* views
were not documented in the Oracle Reference Guide.

Starting a System with Bind-Aware Peeking
Recall that SQL plan baselines will only use the first plan generated. Subsequent
plans, even those resulting from bind-aware peeking, will be stored but not used
until it has been validated, defeating the benefit of bind-aware peeking. One way
around this is to set the parameter optimizer_capture_sql_plan_baselines to false
after starting the database, allowing the plans to all be loaded into the cache. You
can then set this parameter to true after some up time and manually load the cursor
cache into the SQL plan baseline.

302 Oracle Database 11g New Features

Temporary Tablespace Features
Two new features are available in Oracle Database 11g related to temporary
tablespaces. The first is the alter tablespace shrink space and alter tablespace
shrink tempfile commands. Second is a new view, DBA_TEMP_FREE_SPACE. Let’s
look at each of these in some more detail next.

Temporary Tablespace Shrink
Certain database operations may require unusually large amounts of temporary
tablespace usage, which leads to large tempfiles. If these operations are rare, or one-
time operations, then it would nice to be able to shrink those tempfiles down to some
smaller size. Oracle Database 11g provides two options to reduce the size of a
temporary tablespace. The alter tablespace shrink space command will cause Oracle
to reduce the overall size of the temporary tablespace to its originally defined size.
The alter tablespace shrink tempfile command allows you to shrink a given tempfile
to its originally defined size. Both commands come with a keep option, which allows
you to indicate that you want the temporary tablespace or data file to be a minimum
of the keep size.

For example, these commands will resize the TEMP tablespace to its original size:

Alter tablespace temp shrink space;
alter tablespace temp shrink tempfile '/oracle01/oradata/orcl/temp01.dbf';

Here is an example of using the keep parameter to manage how much space is
left in the tablespace or the tempfile. Note that using the keep parameter will not
cause the size of the temporary tablespace or tempfiles to grow if they are already
smaller than the keep size:

Alter tablespace temp shrink space keep 100m;
alter tablespace temp shrink
tempfile '/oracle01/oradata/orcl/temp01.dbf' keep 100m;

NOTE
So, why not just use the alter database tempfile
resize command? The main difference is that the
shrink space command will not try to deallocate
extents that are allocated and in use. The resize
command will try to deallocate all the space, and
will return an error if the space is in use and cannot
be deallocated.

Chapter 9: Performance Tuning 303

The DBA_TEMP_FREE_SPACE View
A new view, DBA_TEMP_FREE_SPACE, has been added to Oracle Database 11g to
make it easier to manage temporary tablespaces. This view provides a single place to
determine the total size of a temporary tablespace, how much space is allocated, and
how much is free. Here is an example of a query against DBA_TEMP_FREE_SPACE:

select * from dba_temp_free_space;
TABLESPACE_NAME TABLESPACE_SIZE ALLOCATED_SPACE FREE_SPACE
-------------- ------------------ ------------------ ------------------
TEMP 18,939,904 4,259,840 14,680,064

Real-Time SQL Monitoring
Oracle Database 11g adds additional monitoring for currently executing SQL
statements with the introduction of Real-Time SQL Monitoring. In this section we
will discuss Real-Time SQL Monitoring, views associated with this feature, and how
to generate a report using the features of Real-Time SQL Monitoring. Finally we will
look at how to control Real-Time SQL Monitoring.

Real-Time SQL Monitoring Overview
Real-Time SQL Monitoring allows you to see accumulating execution statistics for
a given SQL statement, updated every second, as that SQL statement is executing.
Real-Time SQL Monitoring is started by default when the SQL statement runs in
parallel or if the SQL statement has consumed at least 5 seconds of CPU or IO time
during a single execution.

Real-Time SQL Monitoring Views
New views, V$SQL_MONITOR and V$SQL_PLAN_MONITOR, are available to
provide the new runtime-related execution statistics. You can use these views in
conjunction with other available Oracle views (such as V$SESSION_LONGOPS) to
get a more complete picture of the SQL being executed.

The V$SQL_MONITOR view provides the main set of statistics for the execution
of a given SQL statement. It is much like the V$SQL view, except that the associated
statistics apply to only the single execution of the execution being monitored. As a
result, if an identical SQL statement is executing in two different sessions, each
execution will have a separate entry in V$SQL_MONITOR.

You can differentiate the different executions by looking at the KEY column
in V$SQL_MONITOR. (Uniqueness is also determined by a combination of the
SQL_ID, the SQL_EXEC_START, and the SQL_EXEC_ID columns). Here is an
example of a query against V$SQL_MONITOR for a long-running execution:

select b.key, b.sql_exec_start,
b.sql_exec_id,
b.buffer_gets BG, b.disk_reads DR, b.elapsed_time ET, b.cpu_time CPU,

304 Oracle Database 11g New Features

a.sql_text
from v$sql a, v$sql_monitor b
where a.sql_id=b.sql_id;
 KEY SQL_EXEC_ SQL_EXEC_ID BG DR ET CPU
------------- --------- ----------- --------- ------ ---------- ----------
SQL_TEXT

 158913789964 21-AUG-07 16777216 10172616 8392 104543994 79934848
delete from child

The V$SQL_PLAN_MONITOR view provides additional information related to
the cursor being executed. There is a row for each operation in the execution plan
of the SQL statement. Here is an example:

select b.key, c.plan_line_id, c.plan_operation, c.output_rows
from v$sql a, v$sql_monitor b, v$sql_plan_monitor c
where a.sql_id=b.sql_id
and b.key=c.key
order by c.plan_line_id;

 KEY PLAN_LINE_ID PLAN_OPERATION OUTPUT_ROWS
------------- ------------ ---------------- -----------
 158913789964 0 DELETE STATEMENT 0
 158913789964 1 DELETE 0
 158913789964 2 TABLE ACCESS 2520000

Real-Time SQL Monitoring Report
If you want to save some typing, you can use the dbms_sqltune.report_sql_monitor
function to produce the SQL monitor report. Here is an example:

declare
 v_output clob;
begin
 v_output:=dbms_sqltune.report_sql_monitor();
dbms_output.put_line(v_output);
end;
/

Several different parameters are available that allow you to adjust the report
output to suit your needs.

Control Real-Time SQL Monitoring
For real-time monitoring to operate, the statistics_level parameter must be set to all
or typical. Additionally you must have enabled the OEM management packs as
discussed in the next section.

Chapter 9: Performance Tuning 305

Hints are available to enable or disable SQL Monitoring. The MONITOR hint
will force SQL Monitoring for a query, and the NO_MONITOR hint can be used to
disable monitoring for a given SQL Statement.

Control the Use of OEM
Management Packs
Unfortunately, not everyone has coughed up the money to use the Oracle Diagnostic
and Tuning Pack features. We are all good citizens, of course, and would not want to
accidentally start using features that we are not licensed for. To help you avoid this
moral dilemma, Oracle added the control_management_pack_access parameter.
This parameter provides the following settings:

 NONE ■ Access to the Diagnostic and Tuning packs is not available.

DIAGNOSTIC ■ Only the Diagnostic Pack will be available.

DIAGNOSTIC+TUNING ■ The default setting, which enables both the
Diagnostic Pack and the Tuning Pack.

End of Line
We have provided coverage of a number of the new and enhanced performance
related features in Oracle Database 11g.

Performance is always something that a DBA seems to be busy dealing with and
features such as pending statistics, the ability to recover previous versions of object
statistics, and extended statistics can all make the DBA’s job easier. These features
can also help to stabilize a database environment, which is also a plus!

SQL Plan management is something to watch out for. While a powerful feature
in and of itself, it can also cause you some problems if you are not thinking about
the potential impacts of this feature on your tuning efforts. Stable plans, in and of
themselves are a great idea. Coupled with Automatic SQL Tuning though, SQL
Plan management is a powerful feature. In the end, I think the DBA is going to
have to embrace these new features and just work with them. My guess is Oracle
will keep building on them and in the end, using them will be a far better thing
than not using them.

But then again, I’ve been wrong before.

This page intentionally left blank

CHAPTER
10

Other New Features
and Enhancements

307

308 Oracle Database 11g New Features

n this chapter, we present a variety of other features that need to be
included in this book. In some cases, these new features could
comprise their own book (such as the XML-related feature set), and in
other cases the feature set is fairly small (for example, RAC-related
features). In this chapter we will review:

 ■ Real Application Clusters

XML ■

Java ■

New Oracle supplied packages and procedures ■

Real Application Clusters
Oracle Database 11g offers new RAC-related features. These features include:

 ■ Oracle call-level interface (OCI) runtime connection load balancing

Using XA transactions with RAC ■

RAC Configuration Assistants ■

Network Configuration Assistant (NetCA) ■

Database rolling upgrade ■

Parallel execution honors service placement ■

Direct NFS ■

We will cover these new features in more detail in the next several sections.

OCI Runtime Connection Load Balancing
Several options have been available for managing workload in RAC clusters since
version 10.2. Starting with Oracle Database 11g, there are two options for load
balancing for OCI clients: connect-time load balancing and runtime load balancing.
These options were available with Java Database Connectivity (JDBC) or ODP.NET
connection pools in version 10.2, and now similar features have been extended to
OCI session pools as well.

Connect-time load balancing works by distributing new incoming sessions to the
best node for a given service when that connection is made. This is facilitated by the
listeners servicing the cluster instances since they periodically receive load-balancing
advisories from the individual instances to help the listeners determine the “best”
node for a new session at any given time. So, connections to instances aren’t spread

 I

Chapter 10: Other New Features and Enhancements 309

randomly across all instances, but take into account some of the existing workload
factors as well.

Runtime load balancing is performed after sessions are connected to instances in
the cluster and requires pooling to be used. The session pool opens connections to
all instances in the cluster. Ideally, these sessions are equally distributed to all
instances. The pool receives load-balancing advisories (just as the listeners do) and
uses that information to determine which connections in the pool can provide the
best service at any given time. So, when a client requests a connection from the
pool (via the OCISessGet() call), the pool returns a session on the instance that is
best able to handle additional workload at that time.

Runtime load balancing for OCI session pools is enabled by default in 11g when
connecting to Oracle Database servers version 10.2 and higher. To disable this
behavior, you must set the mode parameter to oci_spc_no_rlb when calling the
OCISessionPoolCreate() function to create the pool.

Using XA Transactions with RAC
Oracle Database 11g introduces a new background process, GTXn, to support
distributed XA transactions. The new parameter global_txn_processes controls how
many processes are started and is set to 1 by default. In systems where XA transactions
account for a small amount of the workload, the default setting should be sufficient. In
previous versions of RAC, XA transactions needed to adhere to special considerations to
avoid locking and resource issues due to the lack of shared resources for all branches of
a distributed transaction. By allowing an XA transaction to span instances, the scalability
and availability of RAC environments can be harnessed.

Note that if you set global_txn_processes to 0, XA transactions will not be allowed
in an RAC cluster (an ORA-55712 error will be raised when you attempt to start one).
You can, however, change the parameter value via alter system, and instances do not
need to have the same number of processes.

Transaction identifiers (XIDs) are used to globally connect parts of a distributed
transaction. Before Oracle Database 11g, Oracle was not able to determine if
duplicate XIDs were created on different instances. Starting with 11g, Oracle will
determine if the XID is a duplicate and raises an error, preventing the new transaction
from starting. This means that applications may need to handle this exception
(ORA-00150: duplicate transaction ID) and appropriately attempt a new XID.

RAC Configuration Assistants
Configuration assistants for RAC environments received several improvements in 11g.
Among the improvements were new and improved features for

 ■ Database Upgrade Assistant (DBUA)

Network Configuration Assistant (NetCA) ■

Next, we’ll review the new features for each of these assistants.

310 Oracle Database 11g New Features

Database Upgrade Assistant (DBUA)
In previous versions of Oracle Database, patching an RAC cluster to a new version
of the Oracle Database software required many manual steps that were prone to
error. Starting with versions 10.1.0.6 and 10.2.0.3, the DBUA may be used to patch
an RAC cluster, significantly easing the upgrade process.

You may know that the DBUA does prerequisite checks before you can upgrade
the database. This is to ensure a successful upgrade. Prerequisite checks in DBUA
have been improved in Oracle Database 11g, further ensuring a successful upgrade.
New pre-upgrade checks include reviewing initialization parameters to determine if
new ones are required or obsolete ones are present. Other checks include statistics
gathering, available free space, and other warning conditions.

Network Configuration Assistant (NetCA)
The Network Configuration Assistant (NetCA) has added the following features:

 ■ Converts single-instance listeners to cluster listeners

Removes the CRS resources for listeners during deinstallation ■

Each of these features is discussed in the next sections.

NetCA Converts Single-Instance Listeners to Cluster Listeners
During the Oracle Universal Installer’s (OUI) installation process, it invokes the
NetCA to configure the listeners in the cluster. If the NetCA encounters listeners that
are not cluster listeners, it will convert them to cluster listeners.

NetCA Deinstall Removes Listener CRS Resources
During deinstallation, the NetCA removes cluster listeners configured in the
ORACLE_HOME being deinstalled. If the definition for those listeners in the listener
.ora file does not contain static endpoints, NetCA will additionally remove the CRS
resources for those listeners.

Database Rolling Upgrade
Of particular interest to RAC administrators is the introduction of rolling upgrades that
do not require creation of standby databases. Starting with 11g, all future upgrades
will support rolling upgrades to later releases. This includes major releases, patchsets,
and many individual patches as well. We expect we will see the true measure of this
new feature after the first patch is released.

Chapter 10: Other New Features and Enhancements 311

Parallel Execution Honors Service Placement
Parallel query is an option commonly used in RAC environments to spawn additional
query slaves, which each execute a portion of the query’s workload. In an RAC
environment, these query slaves can be placed on different instances to utilize all the
resources available in the cluster. In versions of RAC before Oracle Database 11g,
Oracle could assign query slaves to run on any available instance in the cluster,
regardless of whether that instance offered the service to which the client had
connected. Starting with Oracle Database 11g, the default behavior is to only place

Arup Says…
If DBAs ever felt that they were being held hostage, it was at least during
application of patches. You need to bring the database down for patching, but
doing so invalidates your commitment of the high-uptime SLA. I had a manager
once who actually put in my performance appraisal a condition that the
database can’t come down for any reason for more than four times a year—
planned or unplanned. Well, the four quarterly security patches alone would
have blown that limit. So, what did I do? I just didn’t apply any security patches
for three quarters and then applied the fourth one! Needless to say, that was
detrimental to the business in the long run, but was necessary to support the
high outage requirements for patching.

Keeping this in mind, Oracle’s introduction of online patching is a very
welcome sign. There are two types of patches: software and database objects.
Bear in mind, though, that some, not all, patches will be online. The way it
works is that the online software patches, when applied, modify the code
running in memory directly so that the database instance is altered without a
recycle. This may sound like rocket science, but in reality this is something like
changing a code path dynamically or force-loading a library. Since these
alterations may affect the code and data segments of a process stack, it will not
be possible for all the patches to be online, but some will be.

The other type of patch—database object patch—where a supplied
package or procedure is updated by a patch follows a slightly different path.
You saw earlier in the book that certain types of package changes do not
invalidate the package, especially if you add functions to the end, not at the
top. Oracle has made a commitment that all the patches will be developed
keeping that property in mind. So, we should see a lot fewer invalidations due
to object patching.

But the biggest question is how many of the patches will be online. Only
time will tell that. As of writing this book, there were no patches for Oracle
Database 11g—online or otherwise.

312 Oracle Database 11g New Features

query slaves on nodes that run the service to which the client has connected. This
feature helps make the workload more manageable by ensuring that only sessions
related to the running services are assigned to each instance. You may override this
behavior by using the parallel_instance_group initialization parameter.

Direct NFS
Direct NFS is an implementation of NFS built directly into the RDBMS kernel via
the Oracle Disk Manager (ODM). Direct NFS allows the database to communicate
directly with NFS storage, bypassing the operating system’s NFS client. Note that this
feature isn’t specific to RAC and may be used with single-instance databases as well.

By performing the NFS calls directly from the database code, the operating
system can focus on performing network calls more efficiently and avoid allocating
memory to the NFS client processes and NFS file system client cache. The Oracle
buffer cache provides all caching, performs all I/O to the NFS file system directly,
and just relies on the operating system to make the network calls to the NFS server
or appliance.

Additionally, this also provides a uniform NFS client implementation across all
platforms supported by the database including all flavors of UNIX, Windows, Linux,
and others. That means that not only will NFS clients be available on platforms that
normally don’t provide one (like Windows), but also that all platforms should have
performance characteristics that are more similar given the same CPU and network
specifications.

To configure Direct NFS, you must first put the proper Oracle Disk Manager
library in place. On most platforms, that will involve replacing the $ORACLE_
HOME/lib/libodm11.so file with a copy of the $ORACLE_HOME/lib/libnfsodm11.so
file (or a symbolic link if the platform supports them). Then, you need to properly
mount the NFS share on the operating system according to Oracle’s instructions
specific to your operating system.

Once the NFS share is mounted, the next step for most platforms will be to
create a data file on the new mount point. Oracle will check the $ORACLE_HOME/
dbs/oranfstab, /etc/oranfstab, and /etc/mtab files in that order to find a matching
mount point. If it does, then Direct NFS will attempt to perform IO directly to the
new mount point using the Direct NFS calls. If that fails, it will fall back to using the
operating system kernel’s NFS client. To determine if the client is using Direct NFS
or not, consult the V$DNFS_SERVERS and V$DNFS_FILES views. The following
output from V$DNFS_FILES shows a data file that is being accessed by Direct NFS:

SQL> select * from v$dnfs_files;
FILENAME FILESIZE PNUM SVR_ID
-------------------- ---------- ---------- ----------
/mnt/all1/dan101.dbf 104865792 15 1

Chapter 10: Other New Features and Enhancements 313

XMLDB New Features
Oracle Database 11g introduces a myriad of new features within the XMLDB arena.
The new features address many of the complaints developers and database
administrators have had. These enhancements include:

 ■ Binary XML storage

Partitioning support for XMP ■

XQuery enhancements ■

Database native Web Services ■

XML DB Repository enhancements ■

XML Developer’s Kit ■

We will discuss these features in the next several sections.

Binary XML Storage
Oracle Database 11g introduces a new storage model for schema-less XML storage
in 11g. This binary storage model compresses the XML data with several benefits
including improved performance, resulting in faster parsing, lower transfer times on
the network, and less CPU consumption. The binary model also supports returning
more than one leaf node when doing one pass over an XML document.

While this storage model is called schema-less, that does not mean that XML
schemas are not supported. In fact, multiple documents can be stored in the same
table or even the same column and still be validated against their different
schemas. Schema validation is also faster with binary XML due to its token-based
storage model.

Binary XML is great when you need to store XML documents for which you do
not want to create an XML schema or have to change the metadata of your XML
schema a lot. Multiple fragment-level and leaf-level operations on these large
documents are much faster because they can be pulled out of the document with
a single scan.

Compression and Tokens
Binary XML compresses XML documents by creating tokens for the XML tags within
a document. For example, the tag <name> could be replaced with a token ɾ. Every
time <name> is encountered it would be replaced with ɾ. This would reduce the
storage needed for <name> from 6 down to 1. A 6-to-1 compression ratio isn’t too
bad, but it only applies to the tags and not on the text itself.

314 Oracle Database 11g New Features

If an XML schema is registered in the database as a binary XML schema and a
document is stored referencing that schema, then the database encoder uses the
stored schema to generate the token definitions for the XML document. Schema-less
binary XML does not have tokens already generated for it and so must include the
token to tag mapping within the encoded data. This compressed format is faster
because the same format is used in memory and when transferring data over the
network as is stored on disk. Compression also reduces the overhead of full schema
validation.

Binary XMLType Columns and Tables
In Oracle Database 11g XMLType columns and tables can be specified to use
binary XML storage when you use the store as binary xml parameter when defining
an XMLType column or table as binary during its creation. You can also reference
an XML schema when creating a binary XMLType by using the xmlschema option of
the create table command. Oracle also provides an additional parameter, allow
anyschema, which provides the ability to store documents related to different XML
schemas in the same table or column. Each of the documents can use different
encodings because of their different schemas. This is good for flexibility but bad
for copy-based schema evolution. Here is an example of the creation of a binary
XML table:

create table xml_storage_table of XMLTYPE
xmltype store as binary xml;

And here is an example of the use of the allow anyschema parameter:

create table xml_storage_table of XMLTYPE
xmltype store as binary xml
allow anyschema;

NOTE
Using copy-based schema evolution can result in
documents that do not conform to the schema you
are upgrading. The direct result of nonconformity is
that documents are not decodable after the evolution
is complete.

Virtual Columns
We discussed virtual columns earlier in Chapter 7 and here we will add to that
discussion a bit. Virtual columns can be used with XML LOB-based columns or
tables. The result is the ability to add referential integrity and other constraints to
LOB-based XML documents. You cannot define constraints while creating virtual
columns using the virtual columns option of the create table statement. You can,

Chapter 10: Other New Features and Enhancements 315

however, add them after the table or column has been created. These columns will
not show up in a describe statement if the column is created on an XMLType table.
They will show up, however, if the columns were created on an XMLType column
within a non-XMLType table. Here is an example of the creation of a virtual column
for an XML LOB column:

Create table example_xml of XMLType XMLType

store as binary xml

virtual columns (name as (extractValue(object_value, '/person/fullname')));

Leaf-Level and Fragment-Level Extraction
Continuing our binary storage discussion, we find that binary storage provides the
ability of Oracle Database 11g to return multiple leaf nodes and fragments in one
read through an XML document. Updates to the XML LOB-based storage have also
improved with binary XML due to its ability to update the XML document starting at
the point when the document was changed instead of writing the entire document
back out. Secure-file LOBs using binary XML go one step further and only update
the data that has been changed.

Validation
When you insert a new XML document into a schema-based binary XMLType column
or table, the database performs a full validation of the document against the schema
for you. If you are using other types of XML storage, validation either doesn’t occur or
is a partial validation. Partial validation is not an Oracle Database 11g new feature,
but it is important to understand the change from partial to full validations when
working with binary XML.

Also associated with binary XML in Oracle Database 11g is a new parser that
does not require a DOM (Document Object Model) tree. The validation that occurs
for documents stored in binary XML also does not need to use a DOM. This
provides a considerable performance improvement, which is probably why Oracle
now does a full validation on schema-based binary XML XMLType storage columns
and tables on inserts, and it’s also what allows them to do validation on fragments
that change instead of the full document after the document has been stored.

Support for Language Translation
Binary XML storage, like other types of XML storage, comes with language
translation support. This allows you to store strings that need to be translated into
different languages within your XML document. The XML schema must identify
these strings by specifying the attribute xdb:translate within each element you want
translated. Tags within the XML document that you want translated must then
specify the attribute xml:lang or xml:srclang.

316 Oracle Database 11g New Features

XMLIndex Index Type
In Oracle Database 10g indexing options for the CLOB-based storage model of XML
documents was limited. Function-based indexes were available, but they were
limited in the overall functionality they provided. Ctxsys.ctxxpath, part of Oracle
Text, attempted to help us out but was also limited. Oracle Database 11g has added
XMLIndex types, which address many of the limitations associated with indexing the
LOB-based XML storage model. As a result of the introduction of XMLIndex types,
CTXXPATH indexes are now deprecated.

XMLIndex indexes are supported for both binary and CLOB-based XML storage
models, and can be used on schema-based and schema-less columns or tables.
They provide the power to search an XML document without having to specify
specific elements to index. You can, instead, specify a specific path or index the
entire document in one index. You can also use an XMLIndex index in the select
and from clauses of a statement. This provides a means of working with pieces of
a document instead of the whole document.

This new index type can also be used to search collections of nodes within a
document. A collection is a set of nested nodes, as we see in the following example
where we have a list of nested nodes. Function-based indexes cannot index all of
these nodes, but the new XMLIndex index can:

<COLLECTION>
<PERSON>
<NAME>Fred Smith</NAME>
<TITLE>DOCTOR</TITLE>
</PERSON>
<PERSON>
<NAME>Jon McCall</NAME>
<TITLE>NURSE</TITLE>
</PERSON>
</COLLECTION>

Here is an example of the creation of an XMLIndex. In this case the index will
be synchronized every three days:

create index xml_example_index on xml_storage_table(OBJECT_VALUE)
indextype is XDB.XMLINDEX
parameters ('async (sync every "freq=daily; interval = 3")');

NOTE
The every clause requires the create job privilege.
This is because a job must be scheduled to
synchronize the index.

Chapter 10: Other New Features and Enhancements 317

You can also create an index that will be manually synchronized:

CREATE INDEX xml_example_index on xml_storage_table(OBJECT_VALUE)
indextype is XDB.XMLINDEX
PARAMETERS ('ASYNC(SYNC MANUAL)');

After the index is created it can be updated by running the following command.

BEGIN
DBMS_XMLINDEX.SYNC-INDEX('myuser', 'XML_EXAMPLE_INDEX');
END;
/

Parallel operations are also supported for XMLIndex index types. This means
you can create the indexes faster and rebuild them faster than function-based
indexes. Updates to the indexes are also faster because only pieces of the indexes are
updated instead of the entire index each time data is changed or deleted within the
XML document.

NOTE
Not all XPATH expressions are indexed by
XMLIndex types. They are user-defined XPATH
functions, XPATH axes (other than child,
descendant, and attribute), and statements using
the union operator.

An XMLIndex is created using a path table. The path table contains identifying
information for each node it indexes. You can see the structure of this table via a
describe statement. You can specify the name of the table at index creation time by
adding parameters (‘path table table_name’) to your create index command. You
can even create indexes on the path table. But you cannot access the path table any
other way. You don’t even need to gather statistics on the path table as Oracle does
this for you when processing the table the XMLIndex was created on.

There are two update options with XMLIndex index types. They are synchronous
and asynchronous updates. If you choose synchronous updates (the default), the
index is updated as rows are inserted, updated, or deleted from an XML document.
Asynchronous updates are done when a commit is issued, a DDL is created on the
table or the index, a user is scheduled, or when you choose to kick off an update
manually.

In-place XML Schema Evolution
In Oracle Database 10g we had to evolve our XML schemas the hard way—uphill, in
the snow, during a blizzard. We copied data out, deleted it, upgraded the schema,
and then copied it back in. The cries of the oppressed and downtrodden XML schema

318 Oracle Database 11g New Features

version upgraders have not gone unheard. Oracle has seen fit to grant us the ability to
evolve schemas without all of the copies. There are conditions, of course, but in-place
XML schema evolution is a great step in the right direction.

There are a few restrictions to consider when planning on an in-place schema
evolution. The basic rule is that you have to maintain backward compatibility. You
cannot change the schema so much that existing documents would fail validation.
These rules are quite involved, so please refer to the Oracle documentation for
specifics on what is allowed, what is not, and when you can do it.

Binary XML sometimes will allow changes not normally allowed on non-binary
schemas and disallow changes normally allowed. Please refer to Oracle’s
documentation on the conditions surrounding upgrading XML schemas with and
without binary XML.

The first thing we have to do to evolve an XML schema in-place is to create an
XMLDiff file. Using the xmldiff function as seen in this example will cause the
XMLDiff file to be created:

var mydiff clob;
select xmldiff(xmltype(bfilename('XMLDIR2', 'example.xsd'),
NLS_CHARSET_ID('AL32UTF8')), xmltype(bfilename('XMLDIR2', 'example_v2.xsd'),
NLS_CHARSET_ID('AL32UTF8'))).getClobVal into :mydiff from dual;

Once the diff is created, we use it and the dbms_xmlschema.inPlaceEvolve procedure
to evolve the schema:

begin dbms_xmlschema.inPlaceEvolve('http://localhost:8080/opt/oracle/
example.xsd',
xmltype(:mydiff));
end;
/

Partitioning Support for XMP
Oracle Database adds the ability to partition XMLType columns and tables. This can
have significant impacts when you have large sets of data and want to use partition
pruning or set up an archival strategy based on partitions. The only drawback to
partitioning an XMLType column or table is that XMLIndex index types cannot be
created on partitioned XMLType tables or columns.

XQuery Enhancements
XQuery within Oracle Database 11g supports the WC3 XQuery 1.0 standard and
the JSR 225 XQJ standard. Oracle has also improved XQuery performance when
using XQuery on XML data stored in the schema model. Compound document
support has been added as well as two new SQL operators, XMLExists and
XMLCast.

Chapter 10: Other New Features and Enhancements 319

XMLExists
XMLExists is similar to the exists SQL operator. It checks to see if an XQuery
expression returns an empty result. The result of an XQuery expression evaluates to
node sequences instead of node sets, unlike XPATH expressions. Previous to Oracle
Database 11g you may have used existsNode with XPATH expressions. XMLExists
is a better solution than using existsNode because it accepts XQuery expressions
instead of only the XPATH expressions. Another difference is that XMLExists also
returns TRUE or FALSE instead of 0 or 1 as we find with existsNode. One other
important difference between XMLExists and existsNode is that existsNode can only
be used in the where clause of a SQL statement. XMLExists can be used within the
select clause of a query but it must be inside a case statement.

XMLCast
XMLCast is much like the cast statement, casting the value of an expression to a
specific datatype. This is, of course, a one-way cast from XML to one of the supported
SQL datatypes. You cannot convert those types to XML or convert XML to XML using
XMLCast.

Xlink Support
Oracle Database 11g provides the ability to use the Xlink language to define
referential integrity in XML documents. Xlink has the ability not only to relate one
document to another but also to specify how, or give definition to, why the
relationship exists. For example, if you wanted to specify a link between the author
of a book and every location where the author has been in the world, you could do
so with an Xlink that not only specified the location but also identified what the
location meant to the author. One location might just be a vacation spot while
another might be a place where the author lived. Maybe a specific location was
where the author came up with the inspiration to one of the books they wrote. All of
these identifications within the relationship between author and location can be
specified with the Xlink language.

Compound Document Support
Oracle Database 11g supports compound documents via the xi:xinclude element.
Oracle can deliver xi:xinclude elements as they are entered, or it can expand the
element to contain the document the Xinclude is referencing. By default Oracle
does not expand xi:xinclude elements. Expansion of xi:include elements can be
done by calling the XDBURIType constructor. This constructor takes two arguments.
The first is the path to operate on, and the second tells the constructor to either
expand all xi:xinclude elements by specifying a “1,” suppress errors by specifying
a “2,” or both by specifying a “3”.

320 Oracle Database 11g New Features

NOTE
Although Oracle supports the xi:xinclude element, it
does not support the xpointer attribute.

Database Native Web Services
Oracle Database 11g has improved its web services by allowing PL/SQL stored
objects to be accessed as Web Services. This does not require additional coding on
a developer’s part and also allows dynamic XQuery and SQL statements to be
issued via the web interface instead of using a SQL Client.

To enable Oracle’s native SOAP interface, the xmlconfig.xml file that resides in
the XMLDB repository must be updated. You can access this file using FTP, HTTP,
WebDav, Enterprise Manager, development APIs, or the DBMS_XDB packet using
the cfg_get, cfg_refresh, and cfg_update objects.

The following example shows how to add a Web Services servlet using the
dbms_xdb interface:

Begin

 DBMS_XDB.addServlet(NAME => 'orawsv',

 LANGUAGE => 'C', DISPNAME => 'SQL Web Service',

 DESCRIPT => 'Added to use with SQL queries',

 SCHEMA => 'XDB');

end;

/

begin

 DBMS_XDB.addServletSecRole(SERVNAME => 'orawsv',

 ROLENAME => 'XDB_WEBSERVICES', ROLELINK => 'XDB_WEBSERVICES');

end;

/

begin

 DBMS_XDB.addServletMapping(PATTERN => '/orawsv/*', NAME => 'orawsv');

end;

/

You can verify that the servlet has been added by issuing an XQuery against the
XML repository. The new entry should be in servlet-name = ‘orawsv’ at the location:
/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/wervletconfig/servlet-
list/servlet in the dbconfig.xml file.

Users are granted rights to use the enabled Web Services by granting the xdb_
webservices_over_http and/or xdb_webservices_with_public roles to a user. The xdb_
webservices_over_http role grants web access to all objects, via the web, that the user
has access to within the database except for objects that are PUBLIC. Web access to
PUBLIC objects requires the user to have the xdb_webservices_with_public role.

Submitting SQL queries after that is as simple as constructing an XML document
that conforms to Oracle’s XML schema for database queries. The document is sent to

Chapter 10: Other New Features and Enhancements 321

the database using an HTTP POST request on the web address http://<host>:<port>/
orawsv (where <host> and <port> are the host and port of the HTTPD server running
on your database).

Here’s an example of an XML query request:

<?xml version="1.0" ?>
<envL:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope">
<env:body>
<query xmlns="http://xmlns.oracle.com/orawsv">
<query_text type="SQL">
SELECT * from DBA_TABLES
</query_text>
</query>
</env:body>
</env:Envelope>

XML DB Repository Enhancements
Oracle has provided several new enhancements to the XML DB Repository in 11g.
One of the larger enhancements is the addition of repository events. Events can be
generated on repository resource operations. To handle events an event listener is
created. The listener is composed of event handlers that process individual events.
The event listener is a package (PL/SQL), class (Java), or object type, while the event
handlers are methods or procedures or methods of the event listener. Events can be
enabled or disabled either within a session or at the system level. To enable or
disable events in the session dynamically, issue the command alter session set xml_
db_events = disable or alter session set xml_db_events = enable. Events can also be
set at the system level with the alter system command, as seen in these examples:

alter system set xml_db_events = disable;
alter system set xml_db_events = enable;

Event listeners are defined within an XML document that follows the XDBResConfig
.xsd schema definition. This schema definition can be found in Oracle’s XML DB
repository in the path /sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd.
Once the event listener’s XML resource configuration document has been created, it is
then created in the repository using the DBMS_XDB.createResource function. Once
the resource has been created, it is added to Oracle’s resource configuration through
the dbms_resconfig.appendResConfig procedure.

Procedures that are called by events are passed an event object called
XDBRepositoryEvent defined in the dbms_xevent package. Procedures can use this
event object to gather information about the event and the resource the event is for.
The dbms_xevent package is used to access information about the event and can
also be used to extract the resource object from the event. Once the resource object
is extracted from the event, the dbms_xdbresource package can be used to access
information about the extracted resource.

322 Oracle Database 11g New Features

XML Developers Kit
Oracle Database 11g provides full support of binary XML in both C and Java. First,
Java now supports encoding, decoding, and vocabulary management. Encoding and
decoding are accomplished via the BinXMLStream interface. The decoder can
return SAX events or an InfosetReader type to access decoded XML. Vocabulary
management within Java is done through the BinXMLMetadataProvider interface.

When using binary XML in C or Java, the code must be metadata-aware. In order
for this to happen, several additional steps need to be taken to access binary XML data.
After creating a connection handle a program must also create a metadata repository.
Calling the OCIBinXMLCreateReposCTXFromCPool function for a connection pool or
the OCIBinXMLCreateReposCtxFromConn function for a dedicated connection creates
the repository. Once the repository is created it must be associated with the data
connection being used for binary XML. This is done by calling the OCIBinXmlSetRepos
CtxForConn function. This is a very simple overview of what has to happen in C
programs using binary XML. Oracle’s documentation has complete examples and calls
on using C and Java with binary XML.

Java
Oracle Database 11g offers a number of new Java features including:

 ■ Oracle Java Virtual Machine (JVM)–related Features

Utility improvements ■

JDBC enhancements ■

Let’s look at each of these features in the next section.

Oracle JVM-Related Features
Several JVM-related components have new features and enhancements in Oracle
Database 11g. In this section we will discuss the following:

 ■ Oracle JVM upgraded to JDK 1.5

Oracle JIT compiler ■

Oracle JVM improved user interface ■

Oracle JVM Upgraded to JDK 1.5
The JVM that runs inside the database has been upgraded to JDK version 1.5. This
enhancement provides support for the new features introduced in JDK 1.5. These
new features provide better usability and portability for applications that previously
were difficult to run in the Oracle JVM.

Chapter 10: Other New Features and Enhancements 323

Oracle JIT Compiler
A just-in-time (JIT) compiler was added to the Oracle JVM in Oracle Database 11g.
The JIT adds better manageability for Java programs by avoiding recompilation in
some scenarios and providing dynamic recompilation when necessary. By default,
the JIT is enabled. You can disable it dynamically by using the alter system
command to set the java_jit_enabled parameter to FALSE (default: TRUE).

Oracle JVM Improved User Interface
Many improved interfaces make their debut in Oracle 11g. In this section, we’ll
review the following improvements:

 ■ Command line–like interface from within the database

Shell access directly to session namespace within Oracle JVM ■

JAR files stored as objects ■

Output redirection ■

Setting session-persistent system properties ■

Two-tier duration for Java session state ■

Controlling session termination ■

Command Line–Like Interface A command line–like interface is introduced in
Oracle Database 11g. This new interface allows more flexibility for session state
control, ability to set system properties, JAR support, output redirection, and
immediate session termination. The interface is implemented by two functions in
the dbms_java package.

FUNCTION runjava(cmdline VARCHAR2) RETURN VARCHAR2;
FUNCTION runjava_in_current_session(cmdline VARCHAR2) RETURN VARCHAR2;

The runjava function parameter runs the command provided in the cmdline
parameter as though it were running the command in the shell. That is, a new
invocation of the JVM is started that contains only the state and properties established
by the command given. In the second function, runjava_in_current_session, the
previous state established by previous runjava or runjava_in_current_session calls is
retained and the new command (cmdline) is executed in the previously established
Java state.

Shell Access to Session Namespace When at the command line outside the SQL
prompt, you can also connect to the database’s JVM directly and interact with
it directly. This facility is provided via the ojvmjava command-line interface.

324 Oracle Database 11g New Features

To connect to the session namespace of the database instance, you would use
ojvmjava like this:

ojvmjava –u scott/tiger –runjava –d dbserverhost:1521:ORCL –t

JAR Files Stored as Objects Prior to Oracle Database 11g, when a .jar file was
loaded into the OJVM using the loadjava utility, the classes in the .jar file were
extracted and there was no stored association between the .jar file and the classes
inside it. Starting in Oracle Database 11g, Oracle JVM now supports JAR files as
database objects. The primary benefit of this feature is the ability to preserve the
signature on signed JAR files and the ability to preserve namespaces when the same
class may already be loaded in the database.

Output Redirection When operating at the command line, the Java executable maps
System.out and System.err to the stdout and stderr streams, respectively. However, in
Oracle Database versions prior to Oracle Database 11g, such a mapping was missing
and all OJVM output was sent to trace files in the user_dump_dest location on the
filesystem. Starting with Oracle Database 11g, a new set of functions, set_output_to_sql,
set_output_to_file, and set_output_to_java, allow you to configure where output
from the OJVM is sent.

Setting Session-Persistent System Properties Additional functions in the dbms_java
package allow you to set system properties for your Java session before any executable
code is run. The dbms_java functions responsible for setting, reading, removing, and
inspecting system properties are

FUNCTION set_property(name VARCHAR2, value VARCHAR2) RETURN VARCHAR2;
FUNCTION get_property(name VARCHAR2) RETURN VARCHAR2;
FUNCTION remove_property(name VARCHAR2) RETURN VARCHAR2;
FUNCTION show_property(name VARCHAR2) RETURN VARCHAR2;

Two-Tier Duration for Java Session State Prior to Oracle Database 11g, Java session
state duration was from first invocation until the JVM process exited. A JVM process
exit is an explicit exit by calling java.lang.System.exit, calling dbms_java.endsession,
an uncaught exception, a fatal error, or the end of the database session. With the
introduction of settable Java session state parameters, Oracle has introduced an
additional level of duration for the Java session state.

First, when a session ends for any of the reasons described in the preceding
paragraph, session state information related to specific classes or other java state is lost.
However, assuming that the reason for the Java session termination was not the end of
the database session, configuration settings like output redirection or system properties
persist. When the dbms_java.endsession_and_related_state function is called, the
session is completely ended, all configuration settings including output redirection and
system properties are purged, and these settings are no longer available.

Chapter 10: Other New Features and Enhancements 325

Enhancements to Existing Utilities
The pre-existing Oracle JVM utilities have been enhanced in Oracle Database 11g.
This section describes the following enhancements:

 ■ URL support for loadjava

List-based operation with ■ dropjava

Enhancements to ■ ojvmjava

URL Support for loadjava
The loadjava utility is used to create database objects for java objects. Before Oracle
11g, the file(s) you wished to load had to be on the local filesystem and locally
accessible to the loadjava utility. Starting with Oracle Database 11g, this enhancement
allows the loadjava utility to retrieve a class that is not on the local filesystem, but
instead may be available via a remote HTTP server. To support this, loadjava also
supports use of a proxy server with the new -proxy flag. See the following example
of using loadjava with a URL:

loadjava –u scott/tiger –r –v –proxy myproxy.domain.com:8080 \
http://someserver.com/path/to/my.jar

List-Based Operation with dropjava
The dropjava utility has improved usability by adding the ability to operate on
multiple objects using a single command. This enhancement adds two more
arguments to the ten other documented command-line switches: -list and -listfile.
The -list argument allows you to specify multiple, space-separated arguments as the
names of classes that are to be dropped. The -listfile switch allows you to specify
the pathname to a file containing the list of classes to be dropped. Here are examples
of each syntax:

dropjava –list –u scott/tiger –v class1.class2.class3 class4.class5.class6

dropjava –listfile /path/to/list.txt –u scott/tiger –s –v

Enhancements to ojvmjava
The ojvmjava utility makes it much easier to manage Java in the database by
connecting you to the session namespace in the OJVM in the database. The utility
then provides an interactive shell where you can enter commands to be run by the
OJVM. In previous releases, the result of entering an unrecognized command at the
ojvmjava prompt was to get a prompt back again. In the Oracle Database 11g
release, this behavior has been enhanced to provide an appropriate error message.

326 Oracle Database 11g New Features

Another enhancement to the ojvmjava utility also has to do with error handling.
When Java stack traces are received as the result of a command, the stack trace
information can fill several screens with references. In Oracle Database 11g, the
standard behavior has been updated to display a reduced amount of the stack trace.
In order to obtain the complete stack trace, you can use the -debug command-line
option (this option was also available in previous releases).

Finally, a new keyword has been added to the interactive shell provided by
ojvmjava to allow users to change the database connection without having to
exit the ojvmjava interactive shell. Users can now use the connect keyword from
within the interactive shell to connect to a different database’s OJVM session
namespace. The options for the connect command are the same as those used for
the ojvmjava command-line utility itself. Here are some examples of valid uses of
the connect keyword from within ojvmjava:

connect –o –u scott/tiger ### to connect locally using $ORACLE_SID
connect –t –u scott/tiger@dbserver:1521:orcl ### connect using thin driver
connect –o –u scott/tiger –d remote_db ### connect to remote descriptor
remote_db

The ojvmtc Utility
The ojvmtc utility is new in Oracle Database 11g and offers the ability to resolve
external references before running loadjava. Previously, unresolved references
weren’t discovered until attempting to use the loaded classes. This utility makes it
possible to find potential problems earlier in the process and avoid runtime issues.
The syntax includes options for the list of classes to be included in the closure set
(the set to be loaded into Oracle JVM and a list of classes and archives to be used
in resolution of the references (the set that will be available in Oracle JVM already).
It is also possible to connect to the database in order to obtain the list of classes
available to help resolve references. The syntax for the –server argument (which
allows database connectivity) is unusual and follows the following pattern:
<driver_type>:<user>/<password>@<connection_information>.

Here are some examples of valid syntax. Note that when using the oci driver_
type, valid connection_information may be host:port:sid or TNS connect descriptor
(resolved by SQL*Net client).

ojvmtc –server thin:scott/tiger@dbserver:1521:ORCL –classpath \

/path/to/my.jar:/path/to/your.jar app.jar

ojvmtc –server oci:scott/tiger@orcl_tns –classpath /path/to/my.jar

–list app.jar

ojvmtc –server oci:scott/tiger@orcl_tns –classpath /path/to/my.jar –jar \

loadthis.jar app.jar

Chapter 10: Other New Features and Enhancements 327

JDBC 4.0 Support
Oracle Database 11g fully supports JDBC 4.0. This section describes the most
significant new features for JDBC 4.0 developers:

 ■ Annotations

Wrapper interface ■

Support for java.sql.RowId ■

Improved LOB support ■

In this section, we’ll describe each of these features in more detail.

Annotations
Annotations are metadata embedded in Java code and are associated with a class,
method, or field. Annotations are processed at runtime and can be used to make
runtime decisions by inspecting annotations via provided APIs. Coding and
maintenance can both be reduced by effective use of annotations. Oracle Database
11g supports use of annotations as specified by J2SE 1.5.

Wrapper Interface
Wrappers have been commonly implemented as custom implementations with
slightly different APIs and varying levels of visibility to the classes that have been
wrapped. Java has standardized the wrapper interface and provided methods to
inspect and unwrap the wrapper to provide direct access to the wrapped class.
These methods, isWrapperFor() and unwrap(), are documented in Oracle’s JDBC
Developer’s Guide and Reference as well as in Java’s standard class documentation.
Oracle supports the Wrapper interface in its JDBC drivers.

Support for java.sqlRowId
The java.sql.RowId interface is a new feature in JDBC 4.0. Oracle provides the
oracle.sql.ROWID data type as a JDBC extension and it is related, but not the same
as the java.sql.RowID. There are methods to get the rowid in the ResultSet and
CallableStatement interfaces. Additionally, the PreparedStatement interface offers
a setRowId method to set the value for a parameterized statement.

Improved LOB Support
Previous JDBC versions had support for LOBs and with Oracle Database 11g, previous
interfaces have been improved to make LOB manipulation easier. New methods
createBlob, createClob, and createNClob have been added to the Connection

328 Oracle Database 11g New Features

interface to enable creation of objects for each of the respective LOB types. Here
are some examples:

Connection con = DriverManager.getconnection(url, props);
Blob aBlob = con.createBlob();
in numWritten = aBlob.setBytes(1, val);

JDK Support in Oracle Database 11g
Oracle Database 11g introduces changes to the support status of the JDK. Oracle
client-side JDBC drivers support JDK 1.5 and 1.6. Server-side Java code running in
Oracle JVM is run using JDK 1.5. Oracle JDBC drivers no longer support JDK
versions below version 1.5.

New Oracle Supplied Packages
and Procedures
There are a number of new Oracle supplied packages introduced in Oracle
Database 11g that we have not discussed yet in this book. Here are some quick
highlights of some that would seem to be the most usable:

 ■ Dbms_addm Provides procedures that allow you to manage ADDM
operations.

Dbms_comparison ■ This package provides the ability to compare two
Oracle databases and define the differences between the two. The package
then provides the ability to converge the databases, making one look like
the other.

Dbms_cube ■ and dbms_cube_advise The packages provide additional
abilities to manage online analytical processing (OLAP) cubes and
dimensions.

Dbms_result_cache ■ This package provides the ability to manage the
database result caches (SQL and PL/SQL).

Chapter 10: Other New Features and Enhancements 329

Arup Says…
The package dbms_addm is a great tool for analysis in an RAC environment.
The ADDM reports were available earlier too, but they were instance-specific,
not database-wide. In 11g, the new package dbms_addm allows you to get a
report for the entire database. Here is a simple example to get the ADDM report
for the period between snapshots 612 and 659:

SQL> var task_name varchar2(20)
SQL> exec :task_name := null;
SQL> begin dbms_addm.analyze_db (:task_name, 612,659); end;
 2> /
SQL> set long 99999
SQL> select dbms_addm.get_report (:task_name) from dual;

The second statement gets the report on the screen that shows the ADDM
report for the entire database. Doing so allows you to get a true representation
of metrics for the database, not just for a specific instance.

Perhaps the most interesting is the dbms_comparison package, which
allows two databases to be compared. Remember the compare utility available
in Enterprise Manager in 9i? In 10g, that functionality disappeared in the
browser version of EM, but it was a much-sought-after feature. It appeared in
many third-party database management tools. In 11g, this tool is part of the
database code. The utility of the tool is extended even more by the fact that,
although the local database where you are running the package must be 11g
(of course, this package is available in 11g only), the remote database can be
10gR1 or later.

This page intentionally left blank

APPENDIX
Arup’s Top Ten Features

331

332 Oracle Database 11g New Features

n the not-so-recent past, I bought a new car. No, it’s not a sports car
(I’m too young to retire and blow all my money on one); not a Beemer
or a Merc or even a Saab (can’t afford any one of them). Actually, the
exact name is not really relevant for what I am trying to say, but the
manufacturer is perceived to be very quality-conscious. The car has a

number of features, displayed prominently on glossy brochures, that undoubtedly
attracted my attention. The salesman went through the detailed features with a fine-
toothed comb: How the speakers at the back of the trunk would enhance my
sensory experience and how the sporty-looking exhaust pipe would make me feel
years younger, and so on. Well, I was sold and got the car. Needless to say, almost
all those features worked as expected, but some failed, notably the ones like
enhancing my sensory experience. But, to my pleasant surprise, I discovered a
number of features worth writing home about. Almost all the cars with power
windows have a feature allowing the window to automatically roll down when the
button is pressed for a tad bit longer, but how many cars have you seen, especially
in the non-[ahem]luxury market, that offer the automatic window roll-up function?
Well, this car does. You can flick the window button and the window rolls up
automatically, just as it rolls down.

Well, what’s the big deal about a little feature? Little, yes; but consider picking up
carryout while trying to navigate through the precarious lanes of the drive-in
window of a fast food chain in New York, especially in the rain or snow. Being able
to keep both hands on the steering wheel certainly helps. Or consider rolling up the
window after paying toll or picking up mail from the mailbox; many everyday
activities offer a new perspective on usability and convenience, all because of that
little feature. But that feature didn’t make it to the brochure; it did make it to the
manuals but into some quaint corner. The salesman didn’t rave about it. Some
marketing whiz kid from the manufacturer probably thought this little feature would
not make that much of a difference and so relegated it to near-obscurity. But, from
the perspective of the users, like me, that little feature is god-sent.

The story has a lot of parallels to the introduction of a new database version
from Oracle. Like my car, the new database version has a lot of gee-whiz features;
but how useful are they? The intelligent folks at Oracle’s massive marketing
machinery pick and rave about a few. We the users may have our eyes on another
set of features. Mostly these two overlap, but sometimes they don’t. We users
dismiss a much-touted feature like the extra speakers in the rear of the car while
salivating over the little-known details like the automatic window roll-up. In this
book, Robert and I (actually, Robert mostly) have tried to present to you, the user,
which of these features will make the biggest difference to our tasks, not the ones
that the marketing folks at Oracle think are good for us. And all those have been
presented with enough details for you to get going as soon as possible.

I have provided a commentary throughout the book where I added complementary
content to what Robert has provided. In this appendix, I will elucidate the top ten

 I

Appendix: Arup’s Top Ten Features 333

features that I feel will change your experience as a user. Bear in mind that I have
culled my 12 years of experience exclusively as an Oracle DBA in separating the
chaff from the wheat for this list; this may not be the top ten list Oracle’s top execs
mentioned during the launch or even afterwards, nor are they promoted heavily by
the Oracle product managers. So, they may have been prominently featured
everywhere, or equally likely, hidden in some manual pages.

Happy reading!

Arup’s Top Feature # 1: Database Replay
What’s one thing that does not change in your interaction with the Oracle database,
regardless of the type of user you are—DBA, developer, or even sys admins and
storage admins? It’s the need to change—creating an index, applying a patch,
changing a table from nonpartitioned to partitioned (or changing the partitioning
scheme from hash to range, for instance), changing the storage layout from raw to
ASM, and so on. Business keeps on changing and your database must keep in step
with the changes, so tasks like gathering stats and the need for new indexes are not
just avoidable hassles; they are bare necessities and very much a part of life. And on
every change you probably invariably bite your nails, or do whatever your form of
expressing anxiety is—pondering over the inevitable question of whether this
change will break something somewhere else. Determination of the holistic effect of
change is difficult, if not downright impossible. How can you assess the risk to the
whole system as a result of the change?

If you had a way to perform the changes on a test system prior to making them in
production, it would certainly be one way to have a good night’s sleep. But although
it is easy to replicate a database, it’s not possible to faithfully duplicate the activities,
especially the queries. Relying on a third-party load generator tool typically used by
QA people does not solve the problem. While the tool can run a lot of load, bear in
mind that it’s performing synthetic transactions that may or may not resemble the
actual SQL statements and thus will not be an accurate representation of the
production workload.

This is the sweet spot for Database Replay. You turn it on, by a few mouse clicks
or by calling a supplied package, and voilà! you start recording the workload from
your production system like a camcorder. Later you can replay what was captured
on a test system. The whole process is as easy as operating a camcorder even your
grandmother can operate. Robert has explained it quite splendidly in Chapter 5, so
I’m not going to repeat the usage here. But I will highlight some of the wonderful
use cases. The best use of the tool is when you are concerned about any change in
the environment of the database—the host was changed from Solaris to HP-UX, say;
or the effect of a patch, such as the quarterly CPU patches; or the effect of
converting the database from a single instance to an RAC one, and so on. In all
these cases, you capture the workloads of the production system, which are

334 Oracle Database 11g New Features

recorded in some prespecified directory. You can then transfer these to a test system
where they are replayed, or even replay on the same system when you get some
outage. Either way, you are assured of one thing—whatever you are replaying is an
accurate reflection of what goes on in your production database. Therefore the
effect of the changes will be a truthful prediction of the effect of the same changes
on the production system.

Arup’s Top Feature # 2:
SQL Performance Analyzer
Database Replay is a part of a suite of tools Oracle provides as an option—called
Real Application Testing (RAT). A very close second place in my favorite list is the
second member of the RAT family—SQL Performance Analyzer (SPA). It’s very
similar to Database Replay; but with some important differences. SPA doesn’t record
anything; you can capture the SQL statements from the SQL Tuning Sets or the
library cache, or you can write your own SQL statements. Once it gets a number of
SQL statements, it replays them against the database after changing some parameter
you specify. For instance, suppose you want to find out the effect of the parameter
optimizer_index_cost_adj on the execution plans. You can capture all the SQL
statements in the library cache and make them part of a SQL Tuning Set (STS). Later
you can use SPA to replay the statements in STS while the parameter is changed. SPA
will replay the statements one by one. Because the SQL statements are replayed, SPA
can be used in the production databases to gauge the impact of parameter changes on
SQL statements without actually making these changes. There is another difference:
Database Replay must be run on the entire database and you can’t decide the exact
statements that will be executed.

At the end of the replay session, you get a report of the impact of those changes
on performance—positive, negative, or no impact. The ability to preview the effect
of the changes without making them beforehand is a powerful tool in your arsenal,
and therefore it’s my second choice, very close to the first, in the Top Ten list.

Arup’s Top Feature # 3: Partitioning
Actually there are several enhancements worth mentioning in partitioning. All those
are important and I don’t want you to lose focus on any one of them. So, I have
grouped them all under one section. Let’s see the first one—interval partitioning.
One of the challenges in partitioning is to create new partitions to accommodate
new records. Of course, it’s a small challenge, but it is one that needs to be
addressed throughout the life of the database instead of a one-time deal as in the
case of design. If you don’t add the new partition, a newly inserted row goes into
the default partition; if you have defined one, or the insert fails—both situations

Appendix: Arup’s Top Ten Features 335

are unpalatable. That’s where interval partitioning shines. You define the interval,
and Oracle automatically creates the partitions. Here is an example:

create table reservations (
 res_id number(12),
 res_dt date,
 hotel_id number(4)
)
partition by range (res_dt)
interval (numtoyminterval(1,'MONTH'))
(
 partition nov07
 values less than (to_date('01-12-2007','dd-mm-yyyy'))
)

Once the table is created, it will have only one partition—NOV07—to hold the
records for Nov 2007 and earlier. When a new record comes in to the table for Dec
2007, Oracle will automatically create a new partition for you. Read all about it in
Chapter 7.

The names of these Oracle-created partitions are, however, something like
SYS_P41—not very intuitive to target-specific partitions in a DML statement. So,
Oracle Database 11g provides a new syntax for partitions:

select * from reservations partition for (to_date('3-dec-2007','dd-mon-yyyy'));

Here you didn’t have to specify the partition name; all you did was to reference
the value that will be in the partition and let Oracle get the name for you.

The second important partitioning enhancement is reference partitioning.
Consider the classic example of EMP and DEPT tables. Suppose DEPT is partitioned
on a column called ZONE.

create table dept (
 dept_no number(2),
 dept_name varchar2(20),
 zone varchar2(5)
)
partition by list (zone)
(
 partition east values ('EAST'),
 partition north values ('NORTH')
)
alter table dept add constraint pk_dept primary key (dept_no);

The table EMP is a child table of DEPT, with DEPT_NO as the foreign key:

create table EMP (
 emp_id number(10) not null,

336 Oracle Database 11g New Features

 dept_no number(2) not null,
 constraint fk_emp_dept foreign key (dept_no)
 references dept (dept_no)
)
partition by reference (fk_emp_dept)

Note the code carefully, especially the last line. The table is partitioned, but all
you have given is the name of the foreign key constraint. This partitions the table
exactly as the parent table—DEPT. But also note that the parent—DEPT—has been
partitioned on the column ZONE, while there is no ZONE column in EMP. That is
the beauty of reference partitioning. The child table does not need to have the
partitioning key. This feature allows virtually any table to be partitioned on the
scheme you want, without making too many structural changes.

The other notables in partitioning enhancements are: the ability to composite
partition tables with RANGE as subpartition (so you can use RANGE-RANGE, LIST-
RANGE, and so on) and the ability to partition on virtual columns. Virtual columns
are not stored in the table; they are computed at run time. So, because you can
define partitions, you can choose the best partitioning column without making
changes to the application to populate these columns.

Arup’s Top Feature # 4:
Transparent Tablespace Encryption
Encryption at rest, that is, on the database, has been around for a long time in Oracle
databases, in the form of the supplied package dbms_obfuscation_toolkit. In Oracle 10g
R1, we saw the successor to this package—dbms_crypto. But these packages provided
only some APIs to build your own encryption infrastructure. In 10g R2, Oracle
provided Transparent Database Encryption (TDE), which allowed a column to be
encrypted in the database using only a single command. While that was a relief for
most folks, it was not a solution for most cases. The biggest issue was performance.
If you issue a query like this where the column SSN is encrypted and has an index:

select * from emp where SSN like '123%'

the optimizer will not choose the index. Why? In the database the column is stored
in encrypted format, which has no predetermined pattern to it. For instance, we
know that SSN 123456789 comes after 123456788; so the optimizer will be able to
do an index range scan to find all records with pattern ‘123%’. But if the column is
encrypted, the pattern will be really random; ‘12346789’ and ‘123456788’ may be
stored as ‘0d345f754wf43e23e22b’ and ‘e3af456b39d348234ec’ respectively.
Examine the pattern of the encrypted values—they are worlds apart. So an index
range scan is not possible. Instead a full table scan will be faster. Therefore, if you
issue a query such as ‘123%’ on a TDE-enabled column, the index is ignored and a
full table scan is used, causing performance degradation.

Appendix: Arup’s Top Ten Features 337

The issue is solved in Oracle Database 11g by a new facility called Transparent
Tablespace Encryption (TTE). You just create a tablespace as encrypted:

create tablespace secure_ts
datafile '...'
encryption using 'AES128'
default storage (encrypt);

After this tablespace is created, all you have to do is create a table in this
tablespace, and that will be encrypted automatically. So far it sounds like TDE; what’s
the difference? The difference is the way the cache operates. The blocks of a table in
an encrypted tablespace in the database cache in the SGA are not encrypted. So,
when an index scan occurs, it can scan the index blocks in cleartext and a pattern-
matching query such as “like ‘123%’” can access the index just like any clear-text
table. So, you get the best of both worlds—you have the data encrypted while not
making any sacrifices in performance. Read all about Transparent Tablespace
Encryption in Chapter 6.

Arup’s Top Feature # 5:
Flashback Data Archive
In Oracle 9i, we were introduced to a shiny new feature called flashback
transactions. When data is updated, the past image of the block is stored in the
undo segments, even if the data is committed. Why so? It’s because a long-running
query that started before the data was changed should see the pre-change data,
even if the changes are committed now. The pre-change data is available anyway in
the undo segments; so why not expose it to the users? That was the foundation of
flashback queries, which allowed you to get the data as of a specified time (or SCN).
In Oracle 10g, we saw flashback transactions that actually gave us a history of data
changes, how they changed, who changed it, and so on; a great auditing tool, at
least for debugging purposes.

However, there was a big caveat: The data came from undo segments. Undo
data is not kept forever; it is flushed if it’s not needed and there is a demand for
space from new transactions. So, the flashback transaction fails when the undo data
evaporates. That’s why you resorted to writing your own triggers if you wanted to
keep a record of changes permanently. In Oracle 11g, you don’t have to; a new
feature called flashback data archive does the trick. All you do is to define a
flashback archive and add a table to that:

create flashback archive far1
tablespace ts_far1
quota 1g

338 Oracle Database 11g New Features

retention 1 year
/
alter table emp flashback archive far1
/

That’s it. You have added the table EMP to the flashback archive called FAR1.
Now, whenever the table is changed, the past image will be stored in the flash
recovery area. Internally Oracle implements several tables where this data is stored.
If you explain a flashback query you can see that those unpublished internal tables
are used. So, in effect, when you enable a table for flashback archive, Oracle
performs the functional equivalent of writing triggers to capture the pre-change data
and populate those internal tables.

Then, you may ask, we can accomplish the same using triggers; so what’s the
big deal, apart from the fact that we are relieved of the task of writing the triggers?
Fair question, and there are two very good reasons.

First, those internal tables to record history are not done using triggers, but by
the Oracle software code itself. So, there is no trigger-related performance impact—
no context switching or checking for dependencies.

Second, you can continue using the queries as you did for flashback queries all
along. There is no change to access the flashback archives. This gives you the
flexibility of flashback queries while not limiting you to undo segments only.

You can use this feature in many scenarios. This will be a very quick auditing
tool, without turning on auditing. Both auditing and flashback archives are written
to disk, so IO is involved in both cases. However, in case of auditing, the writing is
almost instantaneous (almost, since the operation is an autonomous transaction),
while flashback archives are written by a special process called flashback data
archiver (FBDA), which is completely asynchronous and does not affect the
transaction. This should be a very good reason to use it over auditing. The other
good reason is that you specify whatever tablespaces you like for flashback
archives; auditing is still on the SYSTEM tablespace. So, you can define flashback
archives on cheaper storage and Oracle will autopurge it after the specified
duration. Read all about Flashback archives in Chapter 2.

Arup’s Top Feature # 6:
SQL Plan Management
What is your biggest concern while collecting statistics on objects? Is it the fear of
breaking something, and more specifically, breaking a perfect execution plan? If that
is the case, you are not alone; this is a concern expressed by DBAs all over the
world. What if there was a way to ensure that the newly calculated execution plan
will be in effect only if it is better than the previous one?

Appendix: Arup’s Top Ten Features 339

In Oracle Database 11g, this is a reality, through a feature called SQL Plan
Management (SPM). Whenever a new execution plan is calculated, it is baselined in
a store called SQL Management Base. Once baselined, the SQL execution plan is
attached to the query and is the plan used for the query from that point onwards

To start the baselining of all queries, you will simply issue this command:

alter system optimizer_capture_sql_plan_baselines = true;

This will cause the execution plan of all queries to be baselined. After that, if you
change something that might potentially affect the execution plan, the plan will
not change. If you issue an autotrace on the query, you will see a line such as the
following:

- SQL plan baseline "SYS_SQL_PLAN_a3185cea611ea913" used for this
statement

This line indicates that the optimizer did not calculate the plan again; it merely
used one of the cached plans. Well, this is good, but don’t you want to make sure
the plan reflects the current conditions, for example, newly updated stats and/or
optimizer environments? Sure you do. That’s where SPM excels too. You can
choose to “evolve” a plan to see how the newly calculated plan compares to the
existing one:

SQL> var rep clob
SQL> exec :rep := dbms_spm.evolve_sql_plan_baseline(-

sql_handle=>'SYS_SQL_353e8c17a551f70c')
SQL> print rep

The report will be printed in the SQL*Plus prompt. You can decide if the plan is
better than the previous one. If so, you can accept it; otherwise, it remains in the
SMB as a historical record of the plan that was once calculated. So, not only do
you have an option to “lock” the best plan, but you have the option to constantly
compare it against others and make sure you always get the best possible plan. You
can see more on SPM in Chapter 9.

Arup’s Top Feature # 7: Private Statistics
One of the problems with optimizer statistics collection is the potential issue of resource
consumption. The collection of statistics, whether by the analyze command or by
using the dbms_stats package, consumes CPU and IO. You can somehow curtail this
by using Resource Manager so that the task does not overwhelm the system and
doesn’t cause the other processes to starve. What if you want to collect the stats when
the system is relatively free but do not want to make them effective immediately? Later
you want to make them effective at some predetermined time. In Oracle Database 11g,

340 Oracle Database 11g New Features

you can do that rather easily. The task of stats gathering has been divided into two
parts—collection and publishing (when they are made effective). By default, the stats
are published as soon as they are collected, but you can change that. To change that
property for the table PROP in the OREF schema, use the following:

begin
 dbms_stats.set_table_prefs ('OREF','PROP','PUBLISH','FALSE');
end;

Now, you can check it:

SQL> select dbms_stats.get_prefs('PUBLISH','OREF','PROP') prefs from dual;

PREFS

FALSE

After that, delete all rows from the table and then gather the stats as usual. After
the stats gathering, if you check the table for the stats, you will see

select last_analyzed, num_rows
from user_tables
where table_name = 'PROP'
/

LAST_ANAL NUM_ROWS
--------- ----------
01-SEP-07 68131

Why do the stats show that there are 68131 rows when we just deleted all the
rows? It’s because the stats have not been “published” yet. They are in a “pending”
state, which you can see as

SQL> select num_rows, last_analyzed
 2 from user_tab_pending_stats
 3 where table_name = 'PROP';

 NUM_ROWS LAST_ANAL
---------- ---------
 0 01-SEP-07

Here you can see that the pending stats show the accurate picture—0 rows. You
can decide now to “publish” these stats:

begin
 dbms_stats.publish_pending_stats('OREF', 'PROP');
end;

Appendix: Arup’s Top Ten Features 341

Now if you check the stats, they show

LAST_ANAL NUM_ROWS
--------- ----------
01-SEP-07 0

The stats correctly show the accurate number of rows—0. This brief demonstration
should be enough to show that the statistics can be private until you decide to make
them public. The most useful scenario I can think of is stats collection on partitions.
You can collect stats on partitions one by one using different slack times on the
system and then publish all of them at one time. You can get a history of the stats
collection on tables and if needed, you can “roll back” the stats to as they were
some point in the past:

begin
 dbms_stats.restore_table_stats (
 ownname => 'OREF',
 tabname => 'PROP',
 as_of_timestamp => '01-SEP-07 06:15:00 PM'
);
end;

This will restore the stats as of that time. So don’t worry if you want to collect
stats at the most opportune time and then publish them at another time. In case of
issues, you can always revert to the previous version of the stats using just one call
to the supplied package.

Arup’s Top Feature # 8:
More Concurrency
You want to alter a table to either add a column or modify a new column, but alas,
it has been frustrating. It has constantly been failing with this error:

ERROR at line 1:
ORA-00054: resource busy and acquire with NOWAIT specified

This is occurring because the table has been locked by some transactions, so the
other session can’t get an exclusive lock on the table to execute the DDL statement.
In a highly active environment there will be an infinitesimally small amount of time
when you can get an exclusive lock on the table; so unless you stop the apps, any
type of DDL on active tables will be pretty much impossible. This artificially
reduces availability of the system even when the database itself is already available.

In Oracle Database 11g, there are two major enhancements:

 1. First, you can add a column to the table even when another transaction
holds row locks on the table.

342 Oracle Database 11g New Features

 2. Second, you can instruct the session executing the DDL to wait for some
specified time, say, 30 seconds, before giving up. You have to issue this
statement:

alter session set ddl_lock_timeout = 30;

After this command has been issued, the ALTER TABLE statement will not
error out if it is unable to get the lock. It will keep on trying for 30 seconds
to get that lock. Even in an active system, there is a strong possibility that an
exclusive lock will be available for the very small duration for the DDL
statement. You can read all about it in Chapter 2.

The other enhancement is in dependencies. Suppose there is a view called VW1
on the table T1. When you add a column to the table T1, in 10g, the view would
have been invalid. In 11g, that view will still be valid. The addition of a column to
the base table does not change the view in any way, so there was no reason why
the view would be invalidated. It took Oracle a while to get that logic, but thank
heavens they finally got it in 11g. Modifying a column of the base table used in the
view, however, still invalidates the view. On a similar note, if a function (or
procedure) calls a package and some new procedures or functions are added to the
package after all the other subprograms there, the calling function is not invalidated.
In 10g it would have been. These features make the infrastructure truly available.

Arup’s Top Feature # 9: Result Cache
Remember Materialized Views (MV), aka snapshots? They are very useful when you
want to store the result of a query in a permanent form. When the users issue that
query, Oracle does not re-execute it; rather, it pulls the results out of the MV and
passes it on. While the system works fine, it has some serious limitations. First, the
results are computed only once, when the DBA refreshes the MV. When the users
select from it, the data is as of the time of refresh, not current; so it may not be
accurate. Second, there is no way of knowing if the data in the MV is stale and if so,
how much behind. But the appeal of the MVs is much too attractive to ignore—by
serving the data from a table rather than executing the query saves CPU and IO and
thus is a boon in repetitive and resource-consuming queries.

So, how can you have your cake and eat it too? Oracle 11g provides the best of
both worlds—in the form of result cache. You invoke it by a hint:

select /*+ result_cache */ p.prop_desc, v.province_name, c.country_name
from properties p, provinces v, countries c
where c.country_code = p.country_code
and v.province_code = p.province_code;

Appendix: Arup’s Top Ten Features 343

When the query is executed for the first time, it has to go to all the base tables,
but the result is cached and subsequent executions go against the result cache, not
the base tables, much like MVs. But that’s where the resemblance with MVs ends.
When the underlying table data changes, the result cache is automatically refreshed
without the DBA’s intervention, so results are always accurate.

This is best suited for tables that do not change frequently, such as the ones
shown earlier. There is a very similar concept in PL/SQL function outputs as well,
known as function cache. You can learn more about result cache in Chapter 8.

Arup’s Top Feature # 10:
Better-Quality PL/SQL Code
In Chapter 8, Robert showed you how to identify a potentially buggy coding
practice in PL/SQL, by making the compiler catch the use of the when others then
null construct. The compiler can catch these types of coding practices when the
session parameter plsql_warnings is set to ENABLE:ALL. When the session
parameter is set and you recompile the procedure where you have used something
like this in the exception section:

when OTHERS then NULL;

the compiler shows a warning:

PLW-06009: procedure "P" OTHERS handler does not end in RAISE or
 RAISE_APPLICATION_ERROR

But the usefulness of the compiler warning does not end there. Consider the
following code:

SQL> create or replace procedure p
 2 as
 3 begin
 4 null;
 5 exception
 6 when others then null;
 7 end;
 8 /
Procedure created.

Now recompile the procedure with the new flags:

SQL> alter procedure p compile plsql_warnings = 'enable:all';
SP2-0805: Procedure altered with compilation warnings

344 Oracle Database 11g New Features

When you describe the error

SQL> show error
Errors for PROCEDURE P:

LINE/COL ERROR

6/7 PLW-06002: Unreachable code
SQL> alter procedure p compile;

Procedure altered.

This is a very useful message. Note the code segment carefully. Line 4 says NULL,
which means nothing gets done in that line; no exception will be ever reached and
hence there rest of the procedure is pretty much useless. The compiler warns you of
that. All these help you write better, more efficient code.

As I mentioned earlier, it’s a Herculean task to boil down all that glitters in
Oracle Database 11g into just ten items. I have tried to present the ones I think will
give the biggest bang for the buck for the users. These choices by no means belittle
so many others that have not been mentioned. If I had more space, I would have
talked about them. Some notables worth mentioning are—virtual columns, PL/SQL
inlining, case-sensitive passwords to meet some regulations that require those, ASM
instance affinity, and many others. A book is by no means a substitute for self-
experimentation, which is exactly what I hope you will do, with this book providing
some initial thrust. On Oracle Technology Network, I have authored a series on 11g
new features. Some of the articles carry a video of the activities that might help you
to get a jumpstart on the usage. Read the book and the articles, watch the movies;
but above all, experiment on your own with twists and variations, without which
you will never really grasp the essence of some of the functionalities provided in
Oracle Database 11g.

Number

3DES encryption, impact on database
performance, 208

Symbols

& (ampersand), using with substitution variables, 109
* (asterisk), identifying parameters with, 25
_ (underscore) parameter, using with extent sizes

in ASM, 39

A

accept_sql_profile attribute, setting, 295
ACLs (access control lists)

assigning to network hosts, 203
creating, 202–203
data dictionary views related to, 204
dropping, 203

active database duplication, implementing in
RMAN, 102–106

adaptive metric thresholds, availability of, 59–60
ADDM (Automatic Database Diagnostic Monitor)

as advisor, 52
classifications of findings in, 52
directives in, 53–55
enabling, 50
finding classifications in, 52
managing through DBMS_ADDM, 50–51
RAC-aware feature of, 49–50
views added to, 48–49

ADDM analysis, removing, 51

ADR (Automatic Diagnostic Repository),
features of, 82–84

ADR Command Interpreter, using, 85
adrci command, calling, 86
ADRCI utility, viewing health check reports

from, 94–95
advise failure command, using in RMAN,

133, 135–136
Advisor framework, introduction of, 52
advisors

Data Recovery Advisor, 128–139
in Oracle Database 10g, 141
SQL Access Advisor (SAA), 128–139
SQL Access Partition advisor, 146
SQL Repair Advisor, 139–140
SQL Tuning Advisor, 288–290
starting in DRA (Data Recovery

Advisor), 131
Streams Performance advisor, 146–147

AES encryption, impact on database
performance, 208

Alert directory in ADR, contents of, 83
alert logs

absence of, 86
storage formats for, 84–85
stripping XML tags from, 85
viewing with Support Workbench, 87–88
viewing with tail option, 85

all option, using, 107
allow anyschema parameter, using, 314
alter database backup controlfile to trace

command, issuing, 23
alter database convert to physical standby

command, issuing, 121
alter diskgroup command, using in ASM, 33–35
alter flashback archive command, issuing, 116

Index

345

346 Oracle Database 11g New Features

alter system command
using with encryption keys, 206
using with rolling upgrades in ASM, 37

alter system start rolling migration command,
using with rolling upgrades in ASM, 37

alter table command
adding virtual columns with, 222, 224
making tables read-only with, 244
using with Flashback Data Archives, 117

alter table move command, compressing
tables with, 236

alter table rename partition command, using, 216
alter table statements, creating virtual columns

in, 223
alter tablespace shrink space command,

using, 302
alter tablespace shrink tempfile command,

using, 302
alterdatabase convert to snapshot standby

command, issuing, 121
ampersand (&), using with substitution

variables, 109
analyze_current_performance procedure,

running, 146–147
archival backups, improvements to, 106
archived redo logs

backup failover for, 107
compression of, 120
deletion policy enhancements to, 107

archives. See also Flashback Data Archives
assigning quotas to, 115
assigning to tablespaces, 115–116
contents of, 114
determining retention for, 115

archiving, disabling for Flashback Data
Archives, 117

arrays, failure of, 110
Arup Says items

ACL feature, 203
add column functionality, 78
alert log files, 86–87
block media recovery feature, 110
compound triggers, 256
compression feature, 237
creating control files prior to upgrades, 23
Data Recovery Advisor, 138
Database Replay, 178
dbms_admin package, 329
DDL WAIT option, 77
extended composite partitioning, 218
extent sizes, 39
FOLLOWS functionality, 252
inlining, 257
interval partitioning, 214
IO calibration, 73
legal reasons for storing historical data, 114
metadata backup/restore functionality, 41

obfuscation, 124
parallelizing backups, 101
partitioning, 146
password case sensitivity, 200
patches, 311
plan stabilization techniques, 285
PL/SQL native compilation, 277
reference partitioning, 220
repeating baselines, 58
replaying workloads, 178, 180
result cache versus materialized

views, 247
scrolling log files, 13
setting diagnostic_dest parameter for

upgrades, 28
snapshot databases, 121
SPA (SQL Performance Analyzer), 192
SQL Query Result Cache, 245
SQL Tuning Advisor, 299
standby databases, 120
statistics collection, 270
system partitioning, 221
TTE (Transparent Tablespace

Encryption), 208
when others then null, 261

as command, using with virtual columns, 223
as of timestamp parameter, using with

Flashback Data Archives, 119
ASM (Automatic Storage Management)

compatibility settings for, 35–36
documentation for, 33
new features in, 32
preferred mirror reads in, 36–37
support for rolling upgrades in, 37–38
support for variable allocation unit sizes

in, 38–39
ASM attribute clause, availability of, 33–34
ASM disks, resynchronizing, 34–35
ASM fast disk resync, features of, 34–35
ASM instances, connecting to, 39
asmcmd commands

ls, 41–42
lsdsk, 41
md_backup, 40
md_restore, 40–41
remap, 41

asterisk (*), identifying parameters with, 25
attribute clause, using in ASM (Automatic

Storage Management), 33
attributes

associating with plan directives, 74–76
displaying for disk groups in ASM, 33–34
using with filters for OEM workload

capture, 159
au size attribute in ASM, description of, 33
AUD$ table, managing, 197
audit_trail parameter, changing, 196–197

Index 347

auditing defaults, enabling and disabling,
196–197

auto_restrict parameter, using with start_capture
procedure, 161

Automatic Database Diagnostic Monitor
(ADDM). See ADDM (Automatic Database
Diagnostic Monitor)

Automatic Diagnostic Repository (ADR),
features of, 82–84

Automatic Memory Management. See also
memory

advisory about changing settings for, 45
converting to, 48
memory_max_target parameter in, 42–46
memory_target parameter in, 42
monitoring, 46–47
and OEM (Oracle Enterprise Manager),

47–48
Automatic SQL Tuning. See also SQL statements

accepting profiles generated by, 294
configuring, 294–295
enabling and disabling, 291–293
enabling and disabling in OEM (Oracle

Enterprise Manager), 288
managing manually, 291–295
manual reporting in, 295
with OEM (Oracle Enterprise Manager),

288–291
overview of, 286–288
setting parameters for, 294–295

Automatic Storage Management (ASM). See
ASM (Automatic Storage Management)

Automatic Workload Repository (AWR). See
AWR (Automatic Workload Repository)

AutoTask
architecture of, 60–61
dictionary views in, 61–64
disabling execution of, 66–67
disabling windows in, 66
maintenance windows in, 67–69

AutoTask tasks
managing manually, 65–67
managing with OEM (Oracle Enterprise

Manager), 64–65
re-enabling, 67

auxiliary instance, preparing for active database
duplication, 103–104

AVERAGE_WAIT_FG column V$SYSTEM
EVENT view, description of, 264

AWR (Automatic Workload Repository)
moving window baselines in, 56–57
relationship to Memory Advisor

views, 46
repeating baselines in, 58–59
Resource Manager statistics in, 74
single baselines in, 57

AWR baseline templates
creating, 59
and data dictionary, 59
removing, 59

AWR baselines, new types of, 56
AWR snapshots

creating for workload replay, 179
loading SQL plans from, 279

AWR snapshots, default retention of, 55
awrddrpt.sql manual reporting script, using, 57

B

backup failover, providing for archived redo
logs, 107

backup options, choosing in DBUA (Database
Upgrade Assistant), 11

backup section size command, issuing, 100
backups

improvements to archival backups, 106
parallelizing in RMAN, 100–101
performing with keep option, 106
performing with RMAN command, 11
sectioning, 101
spreading over filesystems, 101

baseline environment, configuring for PL/SQL
and SQL Performance Analyzer, 190

baseline plans. See SQL plan baselines
baselines in AWR. See AWR (Automatic

Workload Repository)
basic_filter parameter, using with SQL

plans, 279
BASICFILE, relationship to SECUREFILE, 209
bigfile tablespace, significance of, 100
binary XML storage

compression and tokens in, 313–314
and in-place XML schema evolution,

317–318
language translation support for, 315
leaf- and fragment-level extraction in, 315
validation of documents related to, 315
virtual columns in, 314–315
and XMLIndex type, 316–317

binary XML, support for, 321
binary XMLType, columns and tables in, 314
bind-aware peeking

features of, 300
starting systems with, 301
views for, 301

block change tracking file, support for, 109
block media recovery, improved performance

of, 109–110
block-level recovery, requirement in

RMAN, 119
BZIP2 compression, addition to RMAN, 102

348 Oracle Database 11g New Features

C

C language, using binary XML in, 321
calibration exercise, viewing status of, 72
capture files, moving to replay system, 170–171
capture process, executing in Database

Replay, 174
capture workload. See workload capture
CAPTURE_ID, obtaining for capture process, 164
captured workloads. See also workload capture

checking preprocessing of, 165
manual preprocessing of, 166–167
preprocessing from OEM, 165

cast statement versus XMLCast operator, 319
catalogs. See recovery catalogs
Cdump directory in ADR, contents of, 83
change command, using noprompt clause of, 138
change failure command, using in RMAN,

137–138
changes, testing, 151
Checkers. See health checks
classifications of findings, determining in

ADDM (Automatic Database Diagnostic
Monitor), 52

Client Side Result Cache, features of, 249. See
also result cache; SQL Query Result Cache

CLIENT_RESULT_CACHE_* parameters,
using, 249

CLOB-based storage model, indexing options
for, 316

clustered databases, upgrading, 17
column groups

creating for multicolumn statistics,
271–272

dropping relative to multicolumn
statistics, 272–273

columns, pivoting, 233–234
command-line interface, availability in JVM, 323
compatible.asm attribute

description of, 33
setting, 35–36

compatible.rdbms attribute in ASM
description of, 33
using, 35–36

composite partitioning, using, 217–218
compound documents, support for, 319
compound triggers

example of, 253–256
sections of, 253

compress keyword, using with tables and
partitions, 236

compressing tables, 235–237
compression

defining in RMAN, 102
disadvantage of, 237
price of, 237

using with Data Pump, 122
value of, 237
verifying, 236

compression command, configuring in
RMAN, 102

compression parameter, options for, 122
concurrency, considering as top feature #8,

341–342
connect privilege, using, 203
connection time option, using with Database

Replay, 170
connection-time load balancing, process of,

308–309
continue statement, using in PL/SQL, 261–262
control_management_pack_access parameter,

using, 305
control-file scripts, creating prior to upgrades, 23
copy command, performing upgrades with, 25
core files, storage of, 85
cr_cntfile.sql file, saving, 23
create diskgroup command, using in ASM, 33, 35
create flashback archive command, issuing, 115
create index command, using with domain

indexes, 221
create spfile from memory command, using, 69
create table as select (CTAS) operation,

performing, 155
create table command

using partitioned by system keyword
with, 220

using with Flashback Data Archives, 117
using with interval-partitioned tables,

212–213
create table statements, creating virtual columns

in, 223
create tablespace command, encrypting

tablespaces with, 207
CTAS (create table as select) operation,

performing, 155
cursor cache, loading plans with, 279
cursor sharing. See bind-aware peeking

D

data corruption errors, dealing with, 133
data dictionaries, changing for reference

partitioning, 219
data dictionary views. See views
Data Pump

versus Export/Import utility, 24–25
and partitioned tables, 125
single-partition imports in, 225–226

Data Pump enhancements
compression of dump file sets, 122
data_options parameter, 125–126

Index 349

encryption enhancements, 123
exp utility deprecated, 122
overwriting dump files in, 125
remap_table parameter, 125
remapping (obfuscation), 123–124
renaming tables during import

process, 125
transportable parameter, 126

Data Recovery Advisor (DRA). See DRA (Data
Recovery Advisor)

DATA_DEFAULT column, querying in
DBA_TAB_COLUMNS view, 224

data_options parameter, using with Data Pump,
125–126

Database Configuration Assistant (DBCA),
changes in, 4

database performance, impact of encryption
on, 208

Database Replay
benefits of, 180
capture workload setup in, 153–154
capturing workloads in, 154–162
connection time scale option for, 170
considering flashback/standby databases

in, 171
considering replay options for, 169–170
deleting workload capture in, 164
executing capture process in, 174
executing manually, 176–178
executing replay clients in, 175–176
executing with OEM (Oracle Enterprise

Manager), 171–174
and external references, 171–172
initiating, 177
moving capture files to replay system,

170–171
overview of, 150–152
Prepare Replay Clients page in, 173
preparing for, 177
preprocessing captured workloads in,

165–168
Replay Workload Choose Initial Options

page in, 173
Replay Workload Customize Options

page in, 173
Replay Workload Review page in, 174
reviewing replay parameters in, 173
setting up replay database for, 168–169
versus SPA (SQL Performance

Analyzer), 193
starting workload clients in, 173
stopping workload capture in, 162–163
synchronization mode option for,

169–170
think time scale attribute for, 170
as top feature #1, 333–334

View Workload Replay page in, 174
Wait for Client Connections page in, 173
workload capture data dictionary views

in, 165
workload capture history in, 167–168
workload support and limitations,

152–153
Database Upgrade Assistant (DBUA). See

DBUA (Database Upgrade Assistant)
databases. See also standby database

enhancements
backing up with RMAN command, 11
comparing, 329
configuring for tablespace encryption, 205
duplicating in RMAN, 102–106
gauging impact of changes on, 150
recovering in DBUA (Database Upgrade

Assistant), 16
restarting, 18
restoring with RMAN command, 16
shutting down, 18

datafiles, moving in DBUA (Database Upgrade
Assistant), 11

day-to-second literal, converting to, 214
db_file_multiblock_read_count, changing, 185
db_securefile parameter, setting, 209
DBA_ADDM_* views, querying, 49
DBA_ADVISOR_* views

querying, 191
using with SQL Tuning Sets, 299

DBA_AUTOTASK_* views, functions of, 61–64
DBA_HIST_BASELINE_TEMPLATE view,

using, 59
DBA_HIST_RSRC_* views, contents of, 74
DBA_HIST_SYSTEM_EVENT view, new

columns in, 265
DBA_REGISTRY view, checking in DBUA, 15
DBA_SQL_MANAGEMENT_CONFIG

dictionary view, querying, 284
DBA_SQL_PLAN_BASELINES view, using, 280
DBA_TEMP_FREE_SPACE view, using with

temporary tablespaces, 303
DBA_USERS_WITH_DEFPWD view, using, 201
DBA_WORKLOAD_* views

descriptions of, 165
populating, 177
querying, 162

DBCA (Database Configuration Assistant),
changes in, 4

dbms_* packages, availability, 328
dbms_addm package

benefits of, 329
programs in, 50–51

dbms_addm.delete, removing ADDM analysis
with, 51

dbms_advisor.add_sts.ref procedure, using, 298

350 Oracle Database 11g New Features

dbms_advisor.execute_task procedure, using, 298
dbms_advisor.set_task_parameter procedure,

using, 298
dbms_auto_task_admin package, using, 66
dbms_auto_task_admin.disable procedure,

using, 66, 291
dbms_auto_task_admin.enable procedure,

using, 67, 291
dbms_comparison package, benefits of, 329
dbms_dqltune.drop_sql_profile procedure,

using, 294
dbms_hm, running health checks with, 91
dbms_hm.run_check, calling, 92
dbms_network_acl_admin.add_privilege

procedure, using, 203
dbms_network_acl_admin.assign_acl

procedure, using, 203
dbms_network_acl_admin.create_acl package,

using, 202
dbms_resource_manager.calibrate_IO

procedure, running, 70–72
dbms_resource_manager.switch_plan

procedure, using, 73
dbms_result_ache.flush, using, 248
dbms_result_cache package, features of, 248
dbms_result_cache.memory_report, using, 248
dbms_scheduler.set_attribute procedure,

using, 72
dbms_spm.alter_sql_plan_baseline procedure,

using, 283–284
dbms_spm.configure procedure, using, 284
dbms_spm.drop_sql_plan_baseline procedure,

using, 285
dbms_spm.evolve_sql_plan_baseline function,

using, 282–283
dbms_spm.load_plans_from_cursor_cache

function, using, 279
dbms_sql package, enhancements to, 259
dbms_sqlpa.report_analysis_task procedure,

using, 192–193
dbms_sqltune procedure, using, 294
dbms_sqltune.accept_sqlprofile function,

using, 294
dbms_sqltune.create_sqlset procedure, using, 297
dbms_sqltune.create_tuning_task procedure,

using, 190
dbms_sqltune.execute_analysis_task procedure,

using, 192
dbms_sqltune.execute_tuning_task procedure,

using, 190
dbms_sqltune.report_auto_tuning_task function,

using, 295
dbms_sqltune.report_sql_monitor function,

using, 304
dbms_sqltune.select_workload_repository table

function, using, 297

dbms_sqltune.set_tuning_task_parameter
procedure, using, 292–295

dbms_stats PL/SQL package, procedures in,
268–269

dbms_stats_delete_pending_stats procedure,
using, 267

dbms_stats_drop_extended_stats procedure,
using, 272–273

dbms_stats.alter_stats_history_retention
procedure, using, 269

dbms_stats.create_extended_stats call, using
with multicolumn statistics, 271–272

dbms_stats.drop_extended_stats procedure,
using, 275

dbms_stats.get_prefs function, using with
statistics, 266

dbms_stats.purge_stats procedure, using, 269
Dbms_stats.restore_* procedures, descriptions

of, 268
dbms_stats.set_schema_prefs procedure,

using, 267
dbms_stats.settable_prefs procedure,

using, 267
dbms_streams_advisor_adm package, features

of, 146
dbms_workload_capture procedure, using,

158–162
dbms_workload_capture.add_filter procedure,

using, 159
dbms_workload_capture.delete_capture_info

procedure, using, 164
dbms_workload_capture.delete_filter

procedure, using, 159
dbms_workload_capture.finish_capture

procedure, using, 163
dbms_workload_capture.start_capture

procedure, using, 160
dbms_workload_replay.cancel procedure,

using, 178
dbms_workload_replaydelete_replay_info

procedure, using, 177
dbms_workload_replay.initialize_replay

procedure, using, 176
dbms_workload_replay.process_capture

procedure, using, 166
dbms_workload_replay.remap_connection

procedure, using, 171
dbms_workload_replay.start_replay procedure,

using, 177
dbms_xdb interface, adding Web Services

servlets with, 320
dbms_xdbresource package, using, 321
dbms_xplan package, display_sql_plan_

baseline call in, 280–281
dbms_xplan.display_dql_plan_baseline,

using, 281

Index 351

DBUA (Database Upgrade Assistant). See also
manual upgrades; upgrades

backup options in, 11
checking DBA_REGISTRY view in, 15
configuring FRA (Flash Recovery Area)

in, 11
entering value for DIAGNOSTIC_DEST

parameter in, 10–11
moving datafiles in, 11
recompiling invalid objects with, 11
recovering databases in, 16
rolling back upgrades in, 14
scrolling log files in, 13
starting, 10
using, 9–12
using with RAC, 310

DBUA upgrades, verifying, 13–15
DBUA-related logging, performing, 12–13
DDL commands, disabling for Flashback Data

Archives, 117
DDL WAIT option, use as default, 77–78
ddl_lock_timeout parameter, using, 78, 242
default_action parameter, using with start_

capture procedure, 161
DEFAULT_MAINTENANCE_PLAN, using,

72–73
DEFAULT_MAINTENANCE_PLAN, using with

AutoTask, 68–69
delete obsolete command, effect of, 107
dependency metadata, recording of, 76
deprecated parameters, types of, 27
describe statement, using with XMLIndexes, 317
deterministic functions, using with result

cache, 247
DIAGNOSTIC_DEST parameter, entering value

for, 10–11
diagnostic_dest parameter

function of, 83
setting, 28

dictionary views. See views
Direct NFS, configuring, 312
directives in ADDM

creating, 53
determining definitions of, 54
example of, 54–55
removing, 54

disk groups, setting disk repair time attribute
for, 35

disk_repair_time attribute in ASM
description of, 33
limitation of, 35
setting, 34–35

display_sql_plan_baseline call, using,
280–281

documents, support for compound
documents, 319

domain indexes, partitioning, 221–222

downgrades
performing with Export/Import utility, 24
versus upgrades, 22

DRA (Data Recovery Advisor). See also
recovery catalogs

benefits of, 138
dictionary views in, 139
features of, 128
selecting failures for repair by, 131
specifying host login credentials for, 130
starting, 130
starting advisors in, 131
using through OEM (Oracle Enterprise

Manager), 129–132
using through RMAN, 132–138

drop after clause, using in ASM, 34
drop flashback archive command, issuing, 116
dropjava utility, enhancements to, 325
dump file sets, compression in Data Pump, 122
dump files, overwriting in Data Pump, 125
dump files, storage of, 85
duplicate command, issuing in RMAN, 105
dynamic SQL

enhancements to, 259
using REF CURSOR with, 259–260

E

encryption
and database performance, 208
enhancements in Data Pump, 123
of tablespaces, 204–208

encryption algorithms, support for, 206–207
encryption using keyword, using with

tablespaces, 207
encryption_wallet_location parameter,

configuring, 205
equivalence, explanation of, 230
error repair. See DRA (Data Recovery Advisor)
errors

dealing with data corruption errors, 133
investigating and reporting, 85, 87
viewing details with Support

Workbench, 88
viewing with Support Workbench,

87–88
event listeners, handling events in, 321
events

generating on repository resource
operations, 321

identifying, 264
exclusive locks, elimination of, 242
exists versus XMLExists operator, 319
exp utility in Data Pump, deprecation of, 122
expdp command, using, 122

352 Oracle Database 11g New Features

Export/Import utilities
downgrading with, 24
upgrading with, 23–24

expression statistics
dictionary views for, 276
dropping, 275
using, 273–275

extended composite partitioning, using, 217–218
extended statistics. See also statistics

expression statistics, 273–276
multicolumn statistics, 270–273

extent sizes, support in ASM (Automatic Storage
Management), 38–39

F

F$ASM_ATTRIBUTE view, querying, 33–34
failure actions, previewing in RMAN, 137
failure keyword, using with change command,

137
failure parameter, using in list failure command,

133–134
failure priority, changing to LOW, 138
failures, listing with RMAN, 133–134
FAN (Fast Application Notification) events,

using in RAC, 241
fast disk resynchronization, enabling in ASM, 34
fault diagnosability infrastructure. See also

Support Workbench
ADR (Automatic Diagnostic Repository)

component of, 82–84
alert log component of, 84–85
introduction of, 82
trace, dump, and core files in, 85

Figures
ADR base structure, 84
auto memory parameter dependency, 44
Database Replay, 152
memory parameters, 43
Support Workbench, 89
virtual column definition clause

syntax, 223
filesystems, spreading backups over, 101
filters

removing, 159
using with OEM workload capture, 159

finish_capture procedure, using, 163
fixed attribute, altering for SQL plan baselines,

281, 284
Flash Recovery Area (FRA), configuring in

DBUA (Database Upgrade Assistant), 11
flashback archive administer privilege,

granting, 114
flashback data archive, as top feature #5,

337–338

Flashback Data Archives. See also archives
administering, 116
administering with views, 118
enabling, 117
setting up, 114–116
using, 118–119
views in, 118

flashback databases, use of, 121
flashback logs, availability of, 110
Flashback Transaction Backout

executing manually, 113–114
executing via OEM, 111–113
setting up for, 111

flush_secret_array procedure, using forall
call in, 255

follows clause, using with triggers, 252
forall call, using in flush_secret_array

procedure, 255
FRA (Flash Recovery Area), configuring in

DBUA (Database Upgrade Assistant), 11
from active database clause, using with

RMAN, 105
function selectivity, determining with

expression statistics, 273–275

G

get_capture_info function, using, 168
get_replay_info function, using, 180
global_txn_process parameter, using with

RAC, 309
grant command, improving catalog security

with, 108

H

hacking, preventing with failed logon delays,
199–201

health check reports, reviewing,
94–95

health checks
collecting information on, 95
modes for, 91
performing with Support Workbench,

89–91
running from OEM (Oracle Enterprise

Manager), 93
running manually, 92

hints, using in Real-Time SQL Monitoring, 305
historical statistics

maintaining repository of, 269
viewing, 269

homes, determining access by ADRCI,
86–87

Index 353

I

ignorecase parameter, using with orapwd
program, 199

impdp command
and transportable parameter, 126
using partition_options parameter of, 125

import catalog command, issuing, 108
Import utility. See Export/Import utilities
Incident directory in ADR, contents of, 83
incident packages. See problem packages
indexes

determining visibility of, 243
making invisible, 243
manual synchronization of, 317

indexing options, using with CLOB-based
storage model, 316

inlining in PL/SQL, example of, 256–257
installer CDs, changes in, 2–3
integrity checks, performing with Support

Workbench, 91
intelligent cursor sharing versus cursor

sharing, 300
interval-partitioned tables

creating, 212–214
maintaining, 216
restrictions on, 215–216

invisible indexes, using, 242–243
IO calibration, availability in Resource

Manager, 70–72
I/O costs, displaying in SAA (SQL Access

Advisor), 142

J

JAR files, storage as objects, 324
Java

enhancements to, 321
using binary XML in, 321

Java process exit, description of, 324
java.sql.RowId interface, availability of, 327
JDBC 4.0 enhancements

annotations, 327
java.sqlRowId, 327
LOB support, 327–328
wrapper interface, 327

JDK support, availability of, 328
Job Activity OEM page, appearance

of, 132
JVM (Java Virtual Machine) enhancements

command line-like interface, 323
JAR files stored as objects, 324
JIT Compiler, 323
output redirection, 324
session-persistent system properties, 324

shell access to session namespace,
323–324

two-tier duration for Java session state, 324
upgrade to JDK 1.5, 321

JVM utility enhancements
dropjava utility, 325
loadjava utility, 325
ojvmjava utility, 325–326
ojvmtc utility, 326

K

keep option
performing backups with, 106
using with temporary tablespaces, 302

L

large objects (LOBs). See LOBs (large objects)
leaf nodes and fragments, returning, 315
list failure command, using in RMAN, 133
list failure detail command, using, 134–135
list failure exclude failure n command, using in

RMAN, 134–135
listeners, converting with NetCA (Network

Configuration Assistant), 310
load balancing, process of, 308–309
loadjava utility, URL support for, 325
LOB support, availability in JDBC 4.0, 327–328
LOBs (large objects), storing, 209
lock table SQL command, using ddl_lock_

timeout parameter with, 242
log files

in Oracle Database 11g, 13
scrolling in DBUA, 13

logging directory, displaying for DBUA, 12
logical standby, support for TDE (Transparent

Data Encryption), 209
logon delay, preventing hacking with, 199–201
lost-write detection, availability of, 119–120
LOW failure priority, changing to, 138
ls commands, availability in ASM (Automatic

Storage Management), 41
lsdsk command, availability in ASM (Automatic

Storage Management), 41

M

manual upgrades. See also upgrades
disadvantage of, 17
preparing for, 17–19

materialized view logs, online redefinition for
tables with, 227

354 Oracle Database 11g New Features

materialized views
enhancements to, 229–231
versus result cache, 247
and result cache, 342

md_backup command, availability in ASM
(Automatic Storage Management), 40

md_restore command, availability in ASM
(Automatic Storage Management), 40–41

memory, sizing, 44. See also Automatic
Memory Management

memory components, examining, 46
memory_max_target parameter, function of,

42–46
memory_size parameter, setting, 45
memory_target parameter

function of, 42
troubleshooting, 44

memory_target parameter, function of, 45
method_opt call, using with multicolumn

statistics, 272
method_opt parameter, building expression

statistics with, 274
metrics, determining with baselines, 59–60
mgmt_p1 and mgmt_p8 parameters, functions

of, 74–76
mirroring. See preferred mirror reads
multicolumn statistics

dictionary views for, 273
dropping, 272–273
generating, 271–272
using, 270–271

multisection backups, enabling in RMAN, 100
mviews. See materialized views
MY_CAPTURE directory, additional files in,

166–167

N

native compilation, availability of, 277
native Web Services, enhancements to,

320–321
NetCA (Network Configuration Assistant), using

with RAC, 310
network hosts, assigning ACLs to, 203
network services, fine-grained access control

on, 202–204
NFS (Network File System), configuring Direct

NFS, 312
noaudit SQL command, using, 197
noprompt clause, using with change

command, 138
normalized tables, flattening with pivot clauses,

231–234
NOT NULL column, adding with default

value, 78

nowait parameter, using with lock table
command, 242

nth subexpression, accessing, 249
numtoyminterval function, calling, 214

O

obfuscation, capabilities in Data Pump,
123–124

objects
recompiling in DBUA (Database Upgrade

Assistant), 11
using single command with, 325

OCI clients, load-balancing options for, 308–309
OEM (Oracle Enterprise Manager)

accessing Support Workbench through, 87
and Automatic Memory Management,

47–48
Automatic SQL Tuning with, 288–291
Baseline Metric Thresholds page in, 60
configuring repeating baselines in, 58
configuring single baselines from, 57
DB control in, 178
deleting workload capture in, 164
examining alert logs with, 85
executing Database Replay with, 171–174
executing Flashback Transaction

Backouts with, 111–113
generating workload capture history

reports in, 167
Grid Control in, 178
managing AutoTask tasks with, 64–65
preprocessing captures workloads

from, 165
removing baseline templates with, 59
Replay Workload page in, 171–172
running health checks from, 93
and SQL Performance Analyzer, 181–188
stopping workload capture in, 163
using DRA (Data Recovery Advisor)

through, 129–132
OEM Capture Workload pages

Database Replay workflow page, 158
Options page, 155
Parameters page, 156
Review page, 157
Schedule page, 156
View Workload Capture page, 157

OEM management packs, controlling
use of, 305

OEM packages, creating for incident files, 96–99
ojvmjava utility

enhancements to, 325–326
using, 323–324

ojvmtc utility, features of, 326

Index 355

online patching, availability of, 311
OPEN failure, appearance of, 135
optimizer, using with Automatic SQL Tuning, 287
optimizer statistics, problem with, 339
optimizer_capture_sql_plan_baselines

parameter, setting, 278, 301
optimizer_features_enable parameter, setting for

Oracle Database 10g, 192
optimizer_use_pending_statistics parameter,

using, 266–267
optimizer_use_sql_plan_baselines parameter,

setting to FALSE, 280
ORA-00054 error, generating, 77, 341
ORA-0600 error, generating, 140
ORA-4031 error, generating in ASM, 39
ORA-15032 error, generating in ASM, 36
ORA-15242 error, generating in ASM, 36
ORA-15283 error, generating in ASM, 36
ORA-20000 error, generating, 275
Oracle Clusterware 11g, installation of, 3
Oracle Data Pump. See Data Pump
Oracle Database 10g

advisors in, 141
rolling back 11g upgrade to, 22
SQL tuning views in, 147–148
SYSTEM_PLAN resource plan in, 73

Oracle Database 10g upgrades
avoiding when installing Oracle

Database 11g, 6
backing up as part of, 5
and contributions to Oracle community, 8
with DBUA (Database Upgrade

Assistant), 9–16
learning about, 5–6
methods for, 9
paths for, 8
pre-requisites for, 7–8
reading upgrade manual prior to, 7
regression testing for, 6–7

Oracle Database 11g
adaptive metric thresholds in, 59–60
add column functionality in, 78
DBUA logs of interest in, 13
equivalence in, 230
fine-grained dependencies in, 76
parameters added to, 25–27
post-upgrade steps for, 19, 21–22
preparing for manual upgrade to, 17–18
pre-upgrade steps for, 18
re-running upgrade to, 18
rolling back upgrade to Oracle

Database 10g, 22
upgrade steps for, 20
upgrading to, 18

Oracle Database 11g upgrades, performing
rollback test for, 22

Oracle Enterprise Manager (OEM). See OEM
(Oracle Enterprise Manager)

Oracle Pre-Upgrade Information Tool,
importance of, 17–18

Oracle wallet
creating master encryption key for, 206
designating directory for, 206
using with tablespace encryption,

204–205
ORACLE_BASE environment variable, function

in install process, 3
ORACLE_HOME, advisory about, 3
Oracle_Server.log, purpose of, 13
orapwd program, using, 199
ordered trigger execution, explanation of, 252

P

packages, availability of, 328
parallel interfile backups, enabling in

RMAN, 100
parallel_instance_group parameter, using with

RAC, 312
parameters

deprecated parameters, 27
enhancements to Oracle Database 11g,

25–27
obsolete parameters, 28

Partition Advisor, features of, 146
partition change tracking (PCT) refresh, using

with materialized views, 227
partition_options parameter, using, 125,

225–226
partitioned tables, controlling, 125
partitioning

effectiveness of, 146
as top feature #3, 334–336
using virtual columns in, 222–225
of XMLType columns and tables, 318

partitioning enhancements
in Data Pump, 225–226
extended composite partitioning, 217–218
interval partitioning, 212–216
reference partitioning, 218–220
system partitioning, 220–221
system-managed domain indexes,

221–222
partitions

compressing, 236
renaming, 216

password file, creating for active database
duplication, 103

password settings, changes in defaults profile,
197–198

password_life_time, changing, 198

356 Oracle Database 11g New Features

PASSWORD_VERSIONS column, valid values
in, 199

passwords
case sensitivity of, 199–200
characters allowed in, 199
complexity of, 198
hashing changes in, 201
use of default passwords, 201

patches, application of, 311
PCT (partition change tracking) refresh, using

with materialized views, 227
pending statistics

publishing, 267–268
reviewing, 267

Perform Recovery page, database failure listed
in, 130

pga_target parameter, keeping current value
of, 44–45

pivot clause, using, 231–234
pivoting, capabilities of, 231
plan capture

automatic plan capture, 278
manual plan loading, 278–279

plan directives in Resource Manager,
associating attributes with, 74–76

plan stabilization techniques, comparing, 285
PL/SQL

check for when others then null
in, 261

named and mixed notation for, 250
PL/SQL enhancements

compound triggers, 253–256
continue statement, 261–262
creating trigger follows clause, 252
creating triggers as enabled or

disabled, 251
inlining, 256
of sequences, 260–261
SIMPLE_INTEGER datatype, 257
as top feature #10, 343–344

PL/SQL for SQL Performance Analyzer
analyze changed environment, 191
comparing results, 192
configuring baseline environment, 190
creating SQL tuning sets, 188
creating SQL Tuning task, 190
data dictionary views of interest, 193
executing task, 190–191
generating analysis report, 192–193
reconfiguring environment, 191
transporting SQL workload to test

system, 189
PL/SQL Function Result Cache, restrictions

on, 258
PL/SQL native compilation, enhancements to,

276–277

PL/SQL stored objects, accessing as Web
Services, 320

PL/SQL warnings, using, 260
plsql_optimize_level, setting for inlining, 257
plsql_warnings parameter

setting to ENABLE:ALL, 343
using, 261

PLW-06009 warning, appearance of, 260
Post_Upgrade.log, purpose of, 13
pragma inline call, using, 256–257
preferred mirror reads, performing in ASM,

36–37
Pre-Upgrade Information Tool, importance of,

17–18
privileges

defining for ACLs (access control lists),
202–203

dropping, 203
problem packages

creating with OEM (Oracle Enterprise
Manager), 97–99

customizing, 98
uploading, 99

profile implementation, disabling, 292
profiles, accepting in Automatic SQL Tuning, 294
PUBLISH setting, modifying, 267

Q

query rewrite
enhancements to, 229–231
performing during refresh, 227

query slaves, generating in RAC (Real
Application Clusters), 311–312

quotas, assigning to archives, 115

R

RAC (Real Application Clusters)
parallel query execution in, 311–312
and rolling upgrades, 310
shadow recording process on, 151
using dbms_addm package in, 329
using XA transactions with, 309

RAC configuration assistants
DBUA (Database Upgrade Assistant), 310
NetCA (Network Configuration

Assistant), 310
RAC configurations, using ASM preferred mirror

reads in, 37
RAC enhancements, OCI runtime connection

load balancing, 308–309
range-range partitioned table, example

of, 217

Index 357

RAT (Real Application Testing), significance
of, 193

read write keywords, using with tables, 244
read-only tables, using in SQL, 244
Real Application Clusters (RAC). See RAC (Real

Application Clusters)
Real Application Testing (RAT), significance

of, 193
Real-Time SQL Monitoring

controlling, 304–305
features of, 303–304
reports for, 304
using hints in
using OEM management packs with, 305

reason parameter, using with finish_capture
procedure, 163

recovery catalogs. See also DRA (Data Recovery
Advisor)

enhancements to, 107–108
importing, 108
improving security of, 108
merging, 108

Recovery Manager (RMAN). See RMAN
(Recovery Manager)

redo logs. See archived redo logs
redundancy, reduction in, 209
REF CURSOR, using with dynamic SQL,

259–260
reference partitioning, using, 218–220
REGEXP_COUNT function, using, 250
regular expressions, enhancements to, 249–250
relies_on clause, using with PL/SQL Function

Result Cache, 258
remap command, availability in ASM

(Automatic Storage Management), 41
remap_data parameter, using in Data Pump,

123–124
remap_table parameter, using with Data

Pump, 125
repair failure command, using in RMAN, 133,

136–137
repair options, availability in RMAN, 136
replay clients, starting in Database Replay,

175–176
replay data, initializing, 176–177
replay databases, creating, 169. See also

Database Replay
replay parameters, reviewing in Database

Replay, 173
replay process

monitoring, 178
starting, 177

replay system, moving capture files to, 170–171
report function

using with workload capture history, 168
using with workload replay, 180

reports
in Automatic SQL Tuning, 295
for Real-Time SQL Monitoring, 304
viewing for SQL Performance Analyzer

task, 187
repository events, availability of, 321
resolve privilege, using, 203
Resource Manager

associating attributes with plan directives
in, 74–76

statistics in AWR, 74
Resource Manager enhancements

built-in resource plans, 73
default maintenance plan, 72–73
IO calibration, 70–72

resource plans
availability of built-in plans, 73
pinning, 73

resource_plan attribute, setting to blank string, 72
restoring

of databases with RMAN command, 16
statistics, 268–269

result cache, considering as top feature #9,
342–343. See also Client Side Result Cache;
SQL Query Result Cache

result_cache_* parameters, setting, 245–246
reuse_dumpfiles parameter, using, 226
RMAN (Recovery Manager)

addition of BZIP2 compression to, 102
using DRA (Data Recovery Advisor)

through, 132–138
RMAN block-level recovery, requirement

for, 119
RMAN commands

backing up databases with, 11
restoring databases with, 16
using with DRA (Data Recovery Advisor),

133–138
RMAN enhancements

active database duplication, 102–106
backup of read-only transportable

tablespaces, 110
block change support for standby

databases, 109
faster backup compression, 102
interfile backup parallelism, 100

RMAN scripting, improvements in, 109–110
rollback, using Export/Import utilities for,

23–25
rolling upgrades

and RAC (Real Application Clusters), 310
support in ASM (Automatic Storage

Management), 37–38
runjava function, using, 323
runtime load balancing, performance

of, 309

358 Oracle Database 11g New Features

S

SAA (SQL Access Advisor)
accessing, 140
creating task relative to SQL

Tuning Sets, 296
displaying I/O costs in, 142
features of, 140–146
Recommendation Options page in,

141–146
Review page in, 141
reviewing results of tasks in, 141–142
SQL Statements tab in, 146
Workload Source page in, 141

scheduler, preventing from defining resource
plan, 72

scheduling. See AutoTask
SCN (system change number)

restoring databases to, 168
selecting, 111

sec_* parameters, using, 200–201
sec_case_sensitive_login parameter, using, 199
sec_max_failed_login_attempts parameter,

using, 201
sec_return_server_release_banner parameter,

using, 201
SECUREFILE LOBS, features of, 209
security

creating ACLs and defining privileges,
202–203

default password use, 201
enabling auditing defaults for, 196–197
encryption algorithms, 206–207
encryption and database performance, 208
hacking prevention with failed logon

delays, 199–201
improving with virtual private catalog,

107–108
password hashing changes, 201
and password-related features, 197–199
tablespace encryption, 204–208

server parameter files (SPFILES)
converting to use of, 69–70
preventing invalid values in, 70
read/write error handling of, 69

servlets, adding, 320
set errorlogging command, using in SQL*Plus,

240–241
set esschar command, using in SQL*Plus, 240
set homepath command, issuing, 86–87
SGA resize requests, view used for, 46–47
sga_target parameter, keeping current value of,

44–45
shadow capture process, function of, 151
shadow files, using in workload capture, 155
show alert command, issuing, 86

shutdown immediate command, issuing, 19
SIDs, relationship to alert logs, 86
SIMPLE_INTEGER datatype, using, 257–258
SKIP_CONSTRAINT_ERRORS, setting data_

options parameter to, 126
SMB (SQL Management Base), contents of, 284
smlschema option, using with create table

command, 314
snapshot databases

checking in DBA_HIST_SYSTEM_EVENT
view, 265–266

using, 120–121
SOAP interface, enabling, 320
SPA (SQL Performance Analyzer)

benefits of, 193
defining parameters in, 185
example of, 184–188
executing task for, 190–191
guided workflow in, 184
Optimizer Upgrade Simulation page in,

182–183
overview of, 181
Parameter Change OEM page n, 183–184
reviewing results of analysis in, 185, 187
as top feature #2, 334
via OEM (Oracle Enterprise Manager), 181
via PL/SQL, 188–193
viewing information about plans in,

187–188
viewing reports of tasks in, 187

SPFILES (server parameter files)
converting to use of, 69–70
preventing invalid values in, 70
read/write error handling of, 69

SQL Access Advisor (SAA). See SAA
(SQL Access Advisor)

SQL baseline information, storage of, 284
SQL Management Base (SMB), contents of, 284
SQL Performance Analyzer (SPA). See SPA

(SQL Performance Analyzer)
SQL plan baselines

dropping, 285
evolving, 282–283
function of, 277
loading SQL statements into, 279
managing, 283–285
querying, 280–281
using, 280

SQL Plan Management
benefits of, 285
overview of, 277–278
plan capture in, 278–279
as top feature #6, 338–339

SQL plans
filtering, 279
verifying performance of, 282

Index 359

SQL problems. See Automatic SQL Tuning
SQL Profiles

altering and dropping, 294
implementing in Automatic SQL

Tuning, 289
SQL Query Result Cache. See also Client Side

Result Cache; result cache
and Client Side Result Cache, 249
features of, 244–245
flushing, 248–249
generating reports on, 248
managing, 248
versus materialized views, 247
parameters for, 245–246
restrictions on, 249
using, 246–247

SQL Repair Advisor, features of, 139–140
SQL statements. See also Automatic SQL Tuning

monitoring, 303
performing tuning analysis on, 287–288
testing, 192

SQL Tuning Advisor, running, 288–290
SQL Tuning Sets

benefits of, 299
creating, 296–297
creating for PL/SQL and SQL

Performance Analyzer, 188
creating tasks for, 296
example of, 184–188
executing tasks related to, 298
linking to tasks, 298
loading, 297–298
loading plans with, 278–279
moving to Staging tables, 189
reviewing results of, 299
setting task parameters for, 298
unpacking into test databases, 189

SQL Tuning Task, creating for PL/SQL and SQL
Performance Analyzer, 190

SQL tuning views, availability in Oracle
Database 10g, 147–148

SQL workload, transporting to test system, 189
SQL*Plus, set commands in, 240–241
sqlnet.ora file, configuring for tablespace

encryption, 205
SQL-related features, read-only tables, 243
standby database enhancements. See also

databases
compression of archived redo logs, 120
lost-write detection, 119–120
real-time query capabilities, 120
snapshot databases, 120–121

standby databases, using in workload replay, 179
start rolling migration parameter, using with

rolling upgrades in ASM, 37
start upgrade command, issuing, 19

start_capture command, issuing, 160–161
STARTUP MOUNT command, restoring

databases with, 16
statistics. See also extended statistics

collecting, 338
collection of, 270
determining automatic publication of,

266–267
maintaining historical statistics

repository, 269
private statistics as top feature #7,

339–341
publishing, 267–268
purging, 269
restoring, 268–269
reviewing in PL/SQL, 268–269
reviewing pending statistics, 267
viewing historical statistics, 269

statistics_level parameter, setting for Real-Time
SQL Monitoring, 304–305

store as binary xml parameter, using, 314
Streams Performance advisor, features of,

146–147
subexpr parameter, using, 249–250
substitution variables, defining, 109–110
substr command, using with unpivot

clauses, 235
Support Workbench. See also fault

diagnosability infrastructure
accessing through OEM (Oracle

Enterprise Manager), 87
features of, 85, 87

Support Workbench steps
closing incidents, 99
creating service requests for user reported

problems, 96
OEM package and upload diagnostic

data, 96–99
performing health checks with, 89–96
reviewing details of errors with, 88
tracking service requests and

implementing repairs, 99
viewing critical alerts and errors with,

87–88
switch_* parameters in Resource Manager,

functions of, 74
synchronization mode, using with Database

Replay, 169–170
SYSASM role

availability of, 38
connecting to ASM instances

with, 39
system change number (SCN)

selecting, 111
using in Database Replay, 168

system partitioning, using, 220–221

360 Oracle Database 11g New Features

system_baseline procedure, using with
SQLTuning Sets, 297–298

SYSTEM_MOVING_WINDOW baseline,
explanation of, 56

SYSTEM_PLAN, availability of, 73

T

table compression, implementing, 235–237
table partitions, exporting with Data Pump,

225–226
tables

controlling partitioning of, 125
creating with virtual columns, 223–225
determining current interval settings

for, 216
importing as nonpartitioned tables, 226
online redefinition of, 227
partitioning, 220–221
partitioning with virtual columns, 225

Tables
DBUA logs in Oracle Database 11g, 13
Oracle Database 11g pre-upgrade

steps, 18
Oracle Database 11g supported upgrade

paths, 8
Oracle Database 11g upgrade steps, 20

tablespace encryption
configuring and opening Oracle wallet

for, 204–205
configuring compatible parameters

for, 204
implementing, 207
overview of, 204
preparing databases for, 205–207
as top feature #4, 336–337

tablespaces
assigning archives to, 115–116
decrypting, 207
enhancements to temporary tablespaces,

302–303
tail -f<logfile> command, issuing, 13
tail option, viewing alert logs with, 85
TDE (Transparent Data Encryption)

disadvantage of, 208
introduction of, 204
versus Log Miner, logical standby, and

streams, 209
versus TTE (Transparent Tablespace

Encryption), 208
temporary tablespaces, enhancements to,

302–303
test systems

transporting SQL workloads to, 189
using Database Replay on, 150–151

think time scale attribute, using with Database
Replay, 170

TIME_WAITED_* columns
in DBA_HIST_SYSTEM_EVENT view, 265
in V$SYSTEM EVENT view, 264

timeout parameter, using with finish_capture
procedure, 163

Top Ten Features
concurrency, 341–342
Database Replay, 333–334
flashback data archive, 337–338
partitioning, 334–336
PL/SQL code, 343–344
private statistics, 339–341
result cache, 342–343
SQL Performance Analyzer, 334
SQL Plan Management, 338–339
transparent tablespace encryption,

336–337
TOTAL_* columns

in DBA_HIST_SYSTEM_EVENT
view, 265

in V$SYSTEM EVENT view, 264
Trace directory in ADR, contents of, 83
trace files, storage of, 85
Trace.log log, purpose of, 13
transaction ID, using in Flashback Transaction

Backout, 113
Transparent Data Encryption (TDE). See TDE

(Transparent Data Encryption)
transportable parameter, using with Data

Pump, 126
triggers

compound triggers, 253–256
creating as enabled or disabled, 251
creating follows clause for, 252

troubleshooting. See fault diagnosability
infrastructure; Support Workbench steps

TTE (Transparent Tablespace Encryption) versus
TDE (Transparent Data Encryption), 208

tuning mode, running optimizer in, 287

U

underscore (_) parameter, using with extent
sizes in ASM, 39

UNDO backup, optimization of, 109
undo_management parameter, default for, 28
unpivot clause, using, 234–235
update testable partition command,

issuing, 221
update testable set command, issuing, 221
upgrade failures, causes of, 19
upgrade paths, support for, 8
UpgradeResults.html log, purpose of, 13

Index 361

upgrades. See also DBUA (Database Upgrade
Assistant); manual upgrades

of clustered databases, 17
and downgrades, 22
preparing control-file scripts for, 23
rolling back in DBUA (Database Upgrade

Assistant), 14
using data copying for, 25
using Export/Import utilities for, 23–25
verifying for DBUA (Database Upgrade

Assistant), 13–15
using parameter, issuing, 109–110
utl_tcp package, relationship to Voyager

worm, 203

V

V$DIAG_INFO view, using, 83–84
V$HM_* views, using with health checks, 95
V$HM_CHECK view, querying for health

checks, 92
V$HM_RUN dictionary view, using with health

checks, 92–93
V$IO_CALIBRATION_STATUS view,

querying, 72
V$LOGMNR_CONTENTS view, contents

of, 209
V$MEMORY_DYNAMIC_COMPONENTS view,

features of, 46
V$MEMORY_RESIZE_OPS view, example

of, 46
V$MEMORY_TARGET_ADVICE view, features

of, 45–46
V$OR views, using in DRA (Data Recovery

Advisor), 139
V$RESULT_CACHE_* views, using, 248
V$RESULT_CACHE_OBJECTS view,

using, 246
V$SQL_CS_* views

using in bind-aware peeking, 300–301
using in Real-Time SQL Monitoring,

303–304
V$SYSTEM_EVENT view, new columns

in, 264
V$TRANSACTION view, using with Flashback

Transaction Backout, 113
verify_function_11G, using with passwords, 198
views

for ACLs (access control lists), 204
in AutoTask, 61–64
changes in, 28–29
in DRA (Data Recovery Advisor), 139
for expression statistics, 276
flattening out with unpivot clauses,

234–235

for historical statistics, 269
for managing result cache, 248
for multicolumn statistics, 273
for PL/SQL for SQL Performance

Analyzer, 193
in Real-Time SQL Monitoring,

303–304
reviewing baseline results in, 57
for reviewing health check reports, 95
for workload capture in Database

Replay, 165
virtual columns

adding messages to, 224–225
adding with alter table command, 224
in binary XML storage, 314–315
creating tables with, 223–225
displaying settings for, 224
partitioning tables with, 225
uses for, 222
using in partitioning, 222–225

virtual private catalog, improving security with,
107–108

Voyager worm, threat of, 203
VPD (Virtual Private Database) policies,

defining, 245

W

wait parameter, using with lock table
command, 242

waits, querying, 264–265
wallet

creating master encryption key
for, 206

designating directory for, 206
using with tablespace encryption,

204–205
Web Services

accessing PL/SQL stored objects as,
320–321

enhancements to, 320–321
Web Services servlets, adding and

accessing, 320
when others then null, checking in PL/SQL,

261, 343
where clauses

determining selectivity of, 300
using multicolumn statistics with,

270–271
window baselines, moving in AWR, 56–57
*_WINDOW windows in AutoTask, function

of, 68
window_name parameter, disabling windows

with, 66
window_size, setting value of, 56

362 Oracle Database 11g New Features

workload capture. See also captured workloads
accomplishing with Database Replay, 154
accomplishing with OEM (Oracle

Enterprise Manager), 155–162
deleting in Database Replay, 164
deleting manually, 164
monitoring process of, 162
naming conventions for, 161
performing manually, 158–162
setting up in Database Replay, 153–154
shadow files for, 155
stopping in Database Replay, 162–163
stopping manually, 163

workload capture history reports
generating manually, 168
generating via OEM, 167

workload clients, starting in Database Replay, 173
workload replay

beginning, 177
canceling, 178
generating reports for, 180
implementing in different database,

178–179
wrc executable, using with replay clients,

175–176
WRM$_BASELINE view, contents of, 56
WRR$_AUTO_STOP_CAPTURE_nn job,

function of, 164

X

XA transactions, using with RAC (Real
Application Clusters), 309

XDBRepositoryEvent object, using, 321

xdb:translate attribute, specifying for binary
XML storage, 315

xi:xinclude element, supporting compound
documents with, 319–320

XLink language, support for, 319
XML DB Repository, enhancements

to, 321
XML Developers Kit, features of, 321
XML documents, compression of,

313–314
XML query request, example of, 321
XML schema, in-place evolution of,

317–318
XML tags, stripping from alert logs, 85
XML_CLOBS option, using with data_options

parameter, 125–126
XMLDB enhancements, binary XML storage,

313–318
XMLDiff file, creating, 318
XMLIndex type, support for, 316–317
XMLType columns and tables,

partitioning, 318
XMP, partitioning support for, 318
XPATH expressions, indexing, 317
XQuery enhancements

compound document support, 319
Xlink support, 319
XMLCast operator, 319
XMLExists operator, 319

Z

ZLIB compression, support for, 102

9S FREE SUBSCRIPTION
TO ORACLE MAGAZINE
Oracle Magazine is essential gear for today's information technology

professionals. Stay informed and increase your productivity with every issue

of Oracle Magazine. Inside each free bimonthly issue you'll get:

• Up-to-date information on Oracle Database, Oracle Application Server,
Web development, enterprise grid computing, database technology,
and business trends

• Third-party vendor news and announcements

• Technical articles on Oracle and partner products, technologies,

and operating environments

• Development and administration tips

• Real-world customer stories

Three easy ways to subscribe:

©Web
Visit our Web site at otn.oracle.com/oraclemagazine.
You'll find a subscription form there, plus much more!

©Fax
Complete the questionnaire on the back of this card
and fax the questionnaire side only to +1.847.763.9638.

©Mail
Complete the questionnaire on the back of this card
and mail it to P.O. Box 1263, Skokie, IL 60076-8263

IF THERE ARE OTHER ORACLE USERS

AT YQUP LOCATION WHO WOULD

LIKE TO RECEIVE THEIR OWN SUB-

SCRIPTION TO ORACLE MAGAZINE,

PLEASE PHOTOCOPY THIS FORM AND

PASS IT ALONG.

ORACLE
M A G A Z I N E

Oracle Corporation 02003.All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its
affiliates All other names may be trademarks of their respective owners.

FREE SUBSCRIPTION

YOU MUST ANSWER ALL TEN QUESTIONS BELOW.

100103

Yes, please send me a FREE subscription to Oracle Magazine. NO
To receive a free subscription to Oracle Magazine, you must fill out the entire card, sign it, and date it
(incomplete cards cannot be processed or acknowledged). You can also fax your application to +1.847.763.9638.
Or subscribe at our Web site at otn.oracle.com/oraclemagazine

n a m e t i t l e

c o m p a n y e - m a i l a d d r e s s

s t r e e t / p . o . b o x

c i t y / s t a t e / z i p o r p o s t a l c o d e t e l e p h o n e

c o u n t r y f a x

s i g n a t u r e (r e q u i r e d) d a t e

x

From time to time, Oracle Publishing allows
our partners exclusive access to our e-mail
addresses for special promotions and
announcements. To be included in this pro-
gram, please check this circle.

Oracle Publishing allows sharing of our
mailing list with selected third parties. If you
prefer your mailing address not to be
included in this program, please check here.
If at any time you would like to be removed
from this mailing list, please contact
Customer Service at +1.847.647.9630 or send
an e-mail to oracle@halldata.com.

W H A T I S T H E P R I M A R Y B U S I N E S S
A C T I V I T Y O F Y O U R F I R M A T T H I S
L O C A T I O N ? (check one only)
▫ 01 Aerospace and Defense Manufacturing
▫ 02 Application Service Provider
▫ 03 Automotive Manufacturing
▫ 04 Chemicals, Oil and Gas
▫ 05 Communications and Media
▫ 06 Construction/Engineering
▫ 07 Consumer Sector/Consumer Packaged Goods
▫ 08 Education
▫ 09 Financial Services/Insurance
▫ 10 Government (civil)
▫ 11 Government (military)
▫ 12 Healthcare
▫ 13 High Technology Manufacturing, OEM
▫ 14 Integrated Software Vendor
▫ 15 Life Sciences (Biotech, Pharmaceuticals)
▫ 16 Mining
▫ 17 Retail/Wholesale/Distribution
▫ 18 Systems Integrator, VAR/VAD
▫ 19 Telecommunications
▫ 20 Travel and Transportation
▫ 21 Utilities (electric, gas, sanitation, water)
▫ 98 Other Business and Services

W H I C H O F T H E F O L L O W I N G B E S T
D E S C R I B E S Y O U R P R I M A R Y J O B
F U N C T I O N ? (check one only)
C o r p o r a t e M a n a g e m e n t / S t a f f
▫ 01 Executive Management (President, Chair,

CEO, CFO, Owner, Partner, Principal)
▫ 02 Finance/Administrative Management

(VP/Director/ Manager/Controller,
Purchasing, Administration)

▫ 03 Sales/Marketing Management
(VP/Director/Manager)

▫ 04 Computer Systems/Operations Management
(CIO/VP/Director/ Manager MIS, Operations)

I S / I T S t a f f
▫ 05 Systems Development/

Programming Management
▫ 06 Systems Development/ Programming Staff
▫ 07 Consulting
▫ 08 DBA/Systems Administrator
▫ 09 Education/Training
▫ 10 Technical Support Director/Manager
▫ 11 Other Technical Management/Staff
▫ 98 Other

W H A T I S Y O U R C U R R E N T P R I M A R Y
O P E R A T I N G P L A T F O R M ? (select all that apply)
▫ 01 Digital Equipment UNIX
▫ 02 Digital Equipment VAX VMS
▫ 03 HP UNIX

▫ 04 IBM AIX
▫ 05 IBM UNIX
▫ 06 Java
▫ 07 Linux
▫ 08 Macintosh
▫ 09 MS-DOS
▫ 10 MVS
▫ 11 NetWare
▫ 12 Network Computing
▫ 13 OpenVMS
▫ 14 SCO UNIX
▫ 15 Sequent DYNIX/ptx
▫ 16 Sun Solaris/SunOS
▫ 17 SVR4
▫ 18 UnixWare
▫ 19 Windows
▫ 20 Windows NT
▫ 21 Other UNIX
▫ 98 Other
99 ▫ None of the above

D O Y O U E V A L U A T E , S P E C I F Y ,
R E C O M M E N D , O R A U T H O R I Z E T H E
P U R C H A S E O F A N Y O F T H E F O L L O W I N G ?
(check all that apply)
▫ 01 Hardware
▫ 02 Software
▫ 03 Application Development Tools
▫ 04 Database Products
▫ 05 Internet or Intranet Products
99 ▫ None of the above

I N Y O U R J O B , D O Y O U U S E O R P L A N T O
P U R C H A S E A N Y O F T H E F O L L O W I N G
P R O D U C T S ? (check all that apply)
S o f t w a r e
▫ 01 Business Graphics
▫ 02 CAD/CAE/CAM
▫ 03 CASE
▫ 04 Communications
▫ 05 Database Management
▫ 06 File Management
▫ 07 Finance
▫ 08 Java
▫ 09 Materials Resource Planning
▫ 10 Multimedia Authoring
▫ 11 Networking
▫ 12 Office Automation
▫ 13 Order Entry/Inventory Control
▫ 14 Programming
▫ 15 Project Management
▫ 16 Scientific and Engineering
▫ 17 Spreadsheets
▫ 18 Systems Management
▫ 19 Workflow

H a r d w a r e
▫ 20 Macintosh
▫ 21 Mainframe
▫ 22 Massively Parallel Processing
▫ 23 Minicomputer
▫ 24 PC
▫ 25 Network Computer
▫ 26 Symmetric Multiprocessing
▫ 27 Workstation
P e r i p h e r a l s
▫ 28 Bridges/Routers/Hubs/Gateways
▫ 29 CD-ROM Drives
▫ 30 Disk Drives/Subsystems
▫ 31 Modems
▫ 32 Tape Drives/Subsystems
▫ 33 Video Boards/Multimedia
S e r v i c e s
▫ 34 Application Service Provider
▫ 35 Consulting
▫ 36 Education/Training
▫ 37 Maintenance
▫ 38 Online Database Services
▫ 39 Support
▫ 40 Technology-Based Training
▫ 98 Other
99 ▫ None of the above

W H A T O R A C L E P R O D U C T S A R E I N U S E
A T Y O U R S I T E ? (check all that apply)
O r a c l e E - B u s i n e s s S u i t e
▫ 01 Oracle Marketing
▫ 02 Oracle Sales
▫ 03 Oracle Order Fulfillment
▫ 04 Oracle Supply Chain Management
▫ 05 Oracle Procurement
▫ 06 Oracle Manufacturing
▫ 07 Oracle Maintenance Management
▫ 08 Oracle Service
▫ 09 Oracle Contracts
▫ 10 Oracle Projects
▫ 11 Oracle Financials
▫ 12 Oracle Human Resources
▫ 13 Oracle Interaction Center
▫ 14 Oracle Communications/Utilities (modules)
▫ 15 Oracle Public Sector/University (modules)
▫ 16 Oracle Financial Services (modules)
S e r v e r / S o f t w a r e
▫ 17 Oracle9i
▫ 18 Oracle9i Lite
▫ 19 Oracle8i
▫ 20 Other Oracle database
▫ 21 Oracle9i Application Server
▫ 22 Oracle9i Application Server Wireless
▫ 23 Oracle Small Business Suite

T o o l s
▫ 24 Oracle Developer Suite
▫ 25 Oracle Discoverer
▫ 26 Oracle JDeveloper
▫ 27 Oracle Migration Workbench
▫ 28 Oracle9i AS Portal
▫ 29 Oracle Warehouse Builder
O r a c l e S e r v i c e s
▫ 30 Oracle Outsourcing
▫ 31 Oracle Consulting
▫ 32 Oracle Education
▫ 33 Oracle Support
▫ 98 Other
99 ▫ None of the above

W H A T O T H E R D A T A B A S E P R O D U C T S A R E
I N U S E A T Y O U R S I T E ? (check all that apply)
▫ 01 Access ▫ 08 Microsoft Access
▫ 02 Baan ▫ 09 Microsoft SQL Server
▫ 03 dbase ▫ 10 PeopleSoft
▫ 04 Gupta ▫ 11 Progress
▫ 05 IBM DB2 ▫ 12 SAP
▫ 06 Informix ▫ 13 Sybase
▫ 07 Ingres ▫ 14 VSAM
▫ 98 Other
99 ▫ None of the above

W H A T O T H E R A P P L I C A T I O N S E R V E R
P R O D U C T S A R E I N U S E A T Y O U R S I T E ?
(check all that apply)
▫ 01 BEA
▫ 02 IBM
▫ 03 Sybase
▫ 04 Sun
▫ 05 Other

D U R I N G T H E N E X T 1 2 M O N T H S , H O W
M U C H D O Y O U A N T I C I P A T E Y O U R
O R G A N I Z A T I O N W I L L S P E N D O N
C O M P U T E R H A R D W A R E , S O F T W A R E ,
P E R I P H E R A L S , A N D S E R V I C E S
F O R Y O U R L O C A T I O N ? (check only one)
▫ 01 Less than $10,000
▫ 02 $10,000 to $49,999
▫ 03 $50,000 to $99,999
▫ 04 $100,000 to $499,999
▫ 05 $500,000 to $999,999
▫ 06 $1,000,000 and over

W H A T I S Y O U R C O M P A N Y ’ S Y E A R L Y
S A L E S R E V E N U E ? (please choose one)
▫ 01 $500, 000, 000 and above
▫ 02 $100, 000, 000 to $500, 000, 000
▫ 03 $50, 000, 000 to $100, 000, 000
▫ 04 $5, 000, 000 to $50, 000, 000
▫ 05 $1, 000, 000 to $5, 000, 000

1

2

3

4

8

9

10

6

5

7

	Copyright © 2008 by The McGraw-Hill Companies, Inc:
	 Click here for terms of use:

	Foreword:
	Acknowledgments:
	Introduction:
	1 Oracle Database 11g Getting Started:
	Installing Oracle Database 11g:
	The Database Configuration Assistant:
	Upgrading to Oracle Database 11g:
	Saving Time When Upgrading:
	Supported Upgrade Paths:
	Supported Upgrade Methods:
	Upgrade with DBUA:
	Manual Upgrades:
	Using Export/Import for Upgrades and Rollback:
	Upgrade Using Data Copying:
	Oracle Parameter Changes:
	New Parameters:
	Deprecated Parameters:
	Obsolete Parameters:
	Undo_Management Parameter Madness:
	Oracle Dictionary View Changes:
	2 Oracle Database New Management Features:
	ASM-Related Changes and New Features:
	New ASM-Related Documentation:
	ASM Disk Group Attributes:
	ASM Fast Disk Resync:
	ASM Compatibility Settings:
	ASM Preferred Mirror Read:
	ASM Rolling Upgrades:
	ASM Support for Variable Allocation Unit Sizes:
	New SYSASM Role:
	New asmcmd Commands:
	Automatic Memory Management:
	Overview of Automatic Memory Management:
	New Memory Advisor Functionality and Views:
	How Is Oracle Managing My Memory?:
	Automatic Memory Management and OEM:
	Converting to Automatic Memory Management:
	ADDM New Features:
	ADDM New Views:
	ADDM Now RAC-Aware:
	Managing ADDM Through DBMS_ADDM:
	Finding Classifications:
	Directives:
	AWR New Features:
	Default Retention of AWR Snapshots Changed:
	AWR Baseline New Features:
	Adaptive Metric Thresholds:
	Scheduler AutoTask Automated Maintenance Tasks:
	AutoTask Architecture:
	AutoTask Dictionary Views:
	Managing AutoTask Tasks via OEM:
	Managing AutoTask Tasks Manually:
	AutoTask Maintenance Windows:
	Parameter File Management Changes and New Features:
	Read/Write Error Handling of SPFILES:
	Easier Conversion to the Use of SPFILES:
	Users Are Prevented from Setting Invalid Values in SPFILES:
	Resource Manager Changes and New Features:
	IO Calibration:
	Default Maintenance Plan:
	Built-In Resource Plans:
	Resource Manager Statistics in AWR:
	Resource Manager Plan Directive New Features:
	Finer-Grained Dependencies:
	DDL WAIT Option Now Default:
	New Add Column Functionality:
	End of Line:
	3 Oracle Database New Availability and Recovery Features:
	Fault Diagnosability Infrastructure:
	The Automatic Diagnostic Repository (ADR):
	The Alert Log:
	Trace, Dump, and Core Files:
	The Support Workbench:
	RMAN New Features:
	Interfile Backup Parallelism:
	Faster Backup Compression:
	Active Database Duplication:
	Improved Handling of Long-Term Backups:
	Backup Failover for Archived Redo Logs:
	Archived Redo Log Deletion Policy Enhancements:
	Recovery Catalog Enhancements:
	Undo Backup Optimization:
	Block Media Recovery Performance Improved:
	Other RMAN New Features:
	Oracle Flashback-Related New Features:
	Oracle Flashback Transaction Backout:
	Oracle Flashback Data Archives:
	Oracle Standby Database New Features:
	Lost-Write Detection:
	Compression of Archived Redo Logs:
	Real-Time Query Capabilities from a Physical Standby Database:
	Snapshot Databases:
	Oracle Data Pump New Features:
	Exp Utility Deprecated:
	Compression of Dump File Sets:
	Data Pump Encryption Enhancements:
	Data Pump Data Remapping (Obfuscation):
	Data Pump Rename Table:
	Data Pump and Partitioned Tables:
	Overwrite Dump Files:
	Data Pump Data_Options Parameter:
	The Transportable Parameter:
	4 Oracle Database Advisors:
	The Data Recovery Advisor:
	The SQL Repair Advisor:
	The SQL Access Advisor:
	The Streams Performance Advisor:
	Oracle Database 10g Database Advisor Views:
	5 Oracle Database Change Management:
	Database Replay:
	Using Oracle Database Replay:
	Database Replay„Overview:
	Database Replay Workload Support and Limitations:
	Database Replay„Capture Workload:
	Database Replay„PreProcess the Captured Workload:
	Database Replay„Replay Workload:
	The SQL Performance Analyzer:
	Overview of SQL Performance Analyzer:
	SQL Performance Analyzer via OEM:
	SQL Performance Analyzer via PL/SQL:
	6 Oracle Database 11g Security:
	Auditing:
	Password-Related Features:
	Password Settings and the Default Profile:
	Password Complexity:
	Password Case Sensitivity:
	Hacking Prevention with Failed Logon Delays:
	Password Hashing Changes:
	Default Password Use:
	Fine-Grained Access Control on Network Services:
	Create the ACL and Define the Associated Privileges:
	Assign the ACL to Network Hosts:
	ACL-Related Data Dictionary Views:
	Tablespace Encryption:
	Overview of Oracle Tablespace Encryption:
	Preparing the Database for Tablespace Encryption:
	Creating Encrypted Tablespaces:
	Encryption and Database Performance:
	TDE and Log Miner, Logical Standby, and Streams:
	Oracle SECUREFILE LOBS:
	7 Oracle Database BI and Data Warehousing New Features:
	Partitioning:
	Interval Partitioning:
	Extended Composite Partitioning:
	Reference Partitioning:
	System Partitioning:
	System-Managed Domain Indexes:
	Virtual Columns:
	About Virtual Columns:
	Creating Tables with Virtual Columns:
	Partitioning Tables with Virtual Columns:
	Data Pump Single-Partition Imports:
	Materialized Views and Query Rewrite:
	Online Redefinition for Tables with Materialized View Logs:
	Query Rewrite During Refresh:
	Partition Change Tracking Refresh for Union All Mviews:
	New and Enhanced Materialized View Catalog Views:
	Query Rewrite Enhancements:
	The Pivot and Unpivot Clauses:
	The Pivot Clause:
	The Unpivot Clause:
	Table Compression:
	8 Application Development:
	SQL*Plus:
	New set Commands:
	Fast Application Notification Events in an RAC Database:
	Online Application Maintenance and Upgrade:
	New lock table Parameter:
	Fewer Exclusive Locks Taken During Online Operations:
	Invisible Indexes:
	SQL:
	Read-Only Tables:
	SQL Query Result Cache:
	Client Side Result Cache:
	Regular Expression Enhancements:
	Named and Mixed Notation from SQL:
	PL/SQL:
	Create Triggers as Enabled or Disabled:
	Create Trigger Follows Clause:
	Compound Triggers:
	Inlining:
	SIMPLE_INTEGER Datatype:
	PL/SQL Function Result Cache:
	Dynamic SQL:
	Dynamic SQL and REF Cursors:
	PLW 06009 Warning:
	PL/SQL Sequence Enhancement:
	PL/SQL Continue Statement:
	9 Performance Tuning:
	Enhanced Oracle Process Monitoring:
	Statistics:
	Pending and Published Statistics:
	Recovering Previous Statistics:
	Extended Statistics:
	PL/SQL Native Compilation:
	SQL Plan Management:
	SQL Plan Management Overview:
	Plan Capture:
	Use of SQL Plan Baselines:
	Querying SQL Plan Baselines:
	Evolving SQL Plan Baselines:
	Managing SQL Plan Baselines:
	Automatic SQL Tuning:
	Overview of Automatic SQL Tuning:
	Automatic SQL Tuning with OEM:
	Manage Automatic SQL Tuning Manually:
	Manual Creation and Use of SQL Tuning Sets:
	Create the Task:
	Create the SQL Tuning Set:
	Load the SQL Tuning Set:
	Link the SQL Tuning Set and the Task:
	Set Any Task Parameters:
	Execute the Task:
	Review the Results:
	Intelligent Cursor Sharing (Bind-Aware Peeking):
	About Bind-Aware Peeking:
	Bind-Aware Peeking Views:
	Starting a System with Bind-Aware Peeking:
	Temporary Tablespace Features:
	Temporary Tablespace Shrink:
	The DBA_TEMP_FREE_SPACE View:
	Real-Time SQL Monitoring:
	Real-Time SQL Monitoring Overview:
	Real-Time SQL Monitoring Views:
	Real-Time SQL Monitoring Report:
	Control Real-Time SQL Monitoring:
	Control the Use of OEM Management Packs:
	10 Other New Features and Enhancements:
	Real Application Clusters:
	OCI Runtime Connection Load Balancing:
	Using XA Transactions with RAC:
	RAC Configuration Assistants:
	Network Configuration Assistant (NetCA):
	Database Rolling Upgrade:
	Parallel Execution Honors Service Placement:
	Direct NFS:
	XMLDB New Features:
	Binary XML Storage:
	Partitioning Support for XMP:
	XQuery Enhancements:
	Database Native Web Services:
	XML DB Repository Enhancements:
	XML Developers Kit:
	Java:
	Oracle JVM-Related Features:
	Enhancements to Existing Utilities:
	The ojvmtc Utility:
	JDBC 4:
	0 Support:

	JDK Support in Oracle Database 11g:
	New Oracle Supplied Packages and Procedures:
	A: ArupŁs Top Ten Features:
	ArupŁs Top Feature # 1: Database Replay:
	ArupŁs Top Feature # 2: SQL Performance Analyzer:
	ArupŁs Top Feature # 3: Partitioning:
	ArupŁs Top Feature # 4: Transparent Tablespace Encryption:
	ArupŁs Top Feature # 5: Flashback Data Archive:
	ArupŁs Top Feature # 6: SQL Plan Management:
	ArupŁs Top Feature # 7: Private Statistics:
	ArupŁs Top Feature # 8: More Concurrency:
	ArupŁs Top Feature # 9: Result Cache:
	ArupŁs Top Feature # 10: Better-Quality PL/SQL Code:
	Index:

